TY - JOUR
T1 - Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission
AU - Bhongale, Chetan Jagdish
AU - Chang, Chih Wei
AU - Lee, Chi Shen
AU - Diau, Eric Wei Guang
AU - Hsu, Chain Shu
PY - 2005/7/21
Y1 - 2005/7/21
N2 - With a reprecipitation method, we prepared fluorescent organic nanoparticles of 1,4-di[(E)-2-phenyl-1-propenyl]-benzene (PPB) that feature weak emission in solution but exhibit blue-shifted absorption and strong emission as aggregates. Picosecond fluorescent transients of these PPB nanoparticles showed biexponential decay, described with a consecutive kinetic model involving two emissive states. X-ray diffraction patterns of PPB nanocrystals indicate long-range packing structures of two types, one the same as in a single crystal and the other not yet determined. PPB molecules in a crystal show an arrangement of a herringbone type with three benzene rings in a PPB unit being nearly planar and two methyl groups of the unit pointing along the same direction, in contrast to the twisted structure of an isolated PPB molecule. Fluorescence transients of PPB on a femtosecond scale indicate an efficient channel for isomerization that is activated for free PPB in solution but inhibited in PPB forming nanoparticles, demonstrating the significance of molecular geometry and twisting motions that affect the relaxation dynamics in the excited state. The versatile techniques combined in this work provide strong evidence to improve our understanding of optical properties in organic nanoparticles dependent on size.
AB - With a reprecipitation method, we prepared fluorescent organic nanoparticles of 1,4-di[(E)-2-phenyl-1-propenyl]-benzene (PPB) that feature weak emission in solution but exhibit blue-shifted absorption and strong emission as aggregates. Picosecond fluorescent transients of these PPB nanoparticles showed biexponential decay, described with a consecutive kinetic model involving two emissive states. X-ray diffraction patterns of PPB nanocrystals indicate long-range packing structures of two types, one the same as in a single crystal and the other not yet determined. PPB molecules in a crystal show an arrangement of a herringbone type with three benzene rings in a PPB unit being nearly planar and two methyl groups of the unit pointing along the same direction, in contrast to the twisted structure of an isolated PPB molecule. Fluorescence transients of PPB on a femtosecond scale indicate an efficient channel for isomerization that is activated for free PPB in solution but inhibited in PPB forming nanoparticles, demonstrating the significance of molecular geometry and twisting motions that affect the relaxation dynamics in the excited state. The versatile techniques combined in this work provide strong evidence to improve our understanding of optical properties in organic nanoparticles dependent on size.
UR - http://www.scopus.com/inward/record.url?scp=23144455720&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=23144455720&partnerID=8YFLogxK
U2 - 10.1021/jp0502297
DO - 10.1021/jp0502297
M3 - Article
C2 - 16852685
AN - SCOPUS:23144455720
VL - 109
SP - 13472
EP - 13482
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
SN - 1520-6106
IS - 28
ER -