Periodic solutions of an infinite dimensional hamiltonian system

Yanheng Ding, Cheng Lee

研究成果: Article

14 引文 斯高帕斯(Scopus)

摘要

We establish existence and multiplicity of periodic solutions to the infinite dimensional Hamiltonian system (∂tu - Δxu = Hv(t, x, u, v) -∂tu - Δxu = Hv(t, x, u, v) for (t, x) ∈R × Ω, where Ω ⊂ RN is a bounded domain or Ω = RN. When Ω is bounded, we treat the situations where H(t, x, z) is, with respect to z = (u, v), sub- or superquadratic, or concave and convex, and discuss also the convergence to homoclinics of sequences of subharmonic orbits. If Ω = RN, we handle the case of superquadratic nonlinearities.

原文English
頁(從 - 到)1881-1908
頁數28
期刊Rocky Mountain Journal of Mathematics
35
發行號6
DOIs
出版狀態Published - 2005 一月 1

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

指紋 深入研究「Periodic solutions of an infinite dimensional hamiltonian system」主題。共同形成了獨特的指紋。

  • 引用此