Optimal Process Conditions for the Manufacture of Aluminum Alloy Bicycle Pedals

Dyi-Cheng Chen, Jheng Guang Lin, Wen Hsuan Ku, Jiun Ru Shiu

研究成果: Article

3 引文 斯高帕斯(Scopus)

摘要

Numerous forms and manufacturing methods of bicycle pedals exist in current markets. The purpose of this study was primarily to design an innovative forging die for a bicycle pedal company through a simulative analysis, using commercial finite element package software. A series of simulation analyses adopted workpiece temperature, mold temperature, forging speed, friction factor, and size of the mold as variables to evaluate the methods of lightweight in the bicycle pedal forging press. The study involved modifying professional bicycle pedal sizes. The effective strain, effective stress, and die radius load distribution of the pedals were analyzed under various forging conditions. Aluminum (A6061 and A7075) was used to analyze the simulative data. The optimal control parameters were subsequently obtained using the Taguchi methods and a genetic algorithm. The results of the simulation analyses indicated that the design of an experimental forging die can lower the deformation behavior of a bicycle pedal.

原文English
文章編號601253
期刊Advances in Mechanical Engineering
2014
DOIs
出版狀態Published - 2014 一月 1

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

指紋 深入研究「Optimal Process Conditions for the Manufacture of Aluminum Alloy Bicycle Pedals」主題。共同形成了獨特的指紋。

  • 引用此