Nonlinear strong commutativity preserving maps on skew elements of prime rings with involution

Pao Kuei Liau, Wei Lu Huang, Cheng Kai Liu

研究成果: Article同行評審

5 引文 斯高帕斯(Scopus)

摘要

Let A be a prime ring of characteristic not 2, with involution, with center Z(A) and with skew elements K. Suppose that f:K→A is a map satisfying [f(x),f(y)]=[x,y] for all x,y∈K. Then there exists a map μ:K→Z(A) such that f(x)=x+μ(x) for all x∈K or f(x)=-x+μ(x) for all x∈K except when A is an order in a 4, 9 or 16-dimensional central simple algebra.

原文English
頁(從 - 到)3099-3108
頁數10
期刊Linear Algebra and Its Applications
436
發行號9
DOIs
出版狀態Published - 2012 五月 1

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory
  • Numerical Analysis
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics

指紋 深入研究「Nonlinear strong commutativity preserving maps on skew elements of prime rings with involution」主題。共同形成了獨特的指紋。

引用此