Nonadditive strong commutativity preserving maps on rank–k matrices over division rings

Cheng Kai Liu, Pao Kuei Liau, Yuan Tsung Tsai

研究成果: Article

2 引文 斯高帕斯(Scopus)

摘要

Let Mn (픻) be the ring of all n × n matrices over a division ring 픻, wheren ≥ 2 is an integer and let S be the set of all rank-k matrices in Mn (픻), wherek is an integer with 1 ≤ k ≤ n. We characterize maps f: S → Mn (픻) such that [f (x), f (y)] = [x,y] for all x,y ∈ S.

原文English
頁(從 - 到)563-578
頁數16
期刊Operators and Matrices
12
發行號2
DOIs
出版狀態Published - 2018 六月

All Science Journal Classification (ASJC) codes

  • Analysis
  • Algebra and Number Theory

指紋 深入研究「Nonadditive strong commutativity preserving maps on rank–k matrices over division rings」主題。共同形成了獨特的指紋。

引用此