Improving roughness quality of end milling Al 7075-T6 alloy with Taguchi based multiobjective quantum behaved particle swarm optimisation algorithm

Wen-Jong Chen, C. C. Hsu, Y. L. Yang

研究成果: Article

2 引文 斯高帕斯(Scopus)

摘要

The purpose of this study was to determine the optimal surface roughness for an end milled Al 7075-T6 alloy by using the Taguchi method and multiobjective quantum behaved particle swarm optimisation (MOQPSO). First, the Taguchi orthogonal array L27(35) and analysis of variance (ANOVA) were used to determine the factors crucial to surface roughness: the feedrate, spindle speed and cutting depth. Response surface methodology (RSM) was then used to construct prediction models for the surface roughness characteristics Ra, Rmax and Rz. Finally, an MOQPSO algorithm was used to solve the multiobjective optimisation problem. The results show that the surface roughness quality generated using this algorithm is superior to that produced in nonoptimal conditions, Taguchi method and traditional multiobjective particle swarm optimisation. Therefore, the methods proposed in this study enhance machining quality and can be widely applied to other metal materials to improve machining efficiency.

原文English
頁(從 - 到)S2647-S2653
期刊Materials Research Innovations
18
DOIs
出版狀態Published - 2014 一月 1

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

指紋 深入研究「Improving roughness quality of end milling Al 7075-T6 alloy with Taguchi based multiobjective quantum behaved particle swarm optimisation algorithm」主題。共同形成了獨特的指紋。

  • 引用此