Generalized derivations preserving quasinilpotent elements in Banach algebras

Cheng Kai Liu, Pao Kuei Liau

研究成果: Article


Let A be a complex Banach algebra, let QA be the set of all quasinilpotent elements in A and let QAr be the set of all quasi-regular elements in A. We characterize generalized derivations g of A such that g(QA) ⊆ QAr provided that A has the property β. The class of Banach algebras with the property β is quite large: it includes C*-algebras, group algebras of locally compact groups, commutative Banach algebras, Banach algebras of all bounded linear operators on Banach spaces and so on. Our theorems are natural generalizations of the recent results for derivations obtained by Alaminos et al. [Bull. London Math. Soc. 46:379–384, 2014].

頁(從 - 到)1888-1908
期刊Linear and Multilinear Algebra
出版狀態Published - 2018 九月 2

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

指紋 深入研究「Generalized derivations preserving quasinilpotent elements in Banach algebras」主題。共同形成了獨特的指紋。

  • 引用此