Faulted gear identification of a rotating machinery based on wavelet transform and artificial neural network

Jian Da Wu, Jian Ji Chan

研究成果: Article

72 引文 斯高帕斯(Scopus)

摘要

In this paper, a condition monitoring and faults identification technique for rotating machineries using wavelet transform and artificial neural network is described. Most of the conventional techniques for condition monitoring and fault diagnosis in rotating machinery are based chiefly on analyzing the difference of vibration signal amplitude in the time domain or frequency spectrum. Unfortunately, in some applications, the vibration signal may not be available and the performance is limited. However, the sound emission signal serves as a promising alternative to the fault diagnosis system. In the present study, the sound emission of gear-set is used to evaluate the proposed fault diagnosis technique. In the experimental work, a continuous wavelet transform technique combined with a feature selection of energy spectrum is proposed for analyzing fault signals in a gear-set platform. The artificial neural network techniques both using probability neural network and conventional back-propagation network are compared in the system. The experimental results pointed out the sound emission can be used to monitor the condition of the gear-set platform and the proposed system achieved a fault recognition rate of 98% in the experimental gear-set platform.

原文English
頁(從 - 到)8862-8875
頁數14
期刊Expert Systems with Applications
36
發行號5
DOIs
出版狀態Published - 2009 七月 1

All Science Journal Classification (ASJC) codes

  • Engineering(all)
  • Computer Science Applications
  • Artificial Intelligence

指紋 深入研究「Faulted gear identification of a rotating machinery based on wavelet transform and artificial neural network」主題。共同形成了獨特的指紋。

  • 引用此