A non-aggregation colorimetric method for trace lead(ii) ions based on the leaching of gold nanorods

Yu Jing Lan, Yang Wei Lin

研究成果: Article

14 引文 (Scopus)

摘要

We report a simple and fast colorimetric method using gold nanorods (Au NRs) as sensing probes to detect Pb2+ ions in complex real samples. The method is based on Pb2+ ions increasing the leaching rate of Au NRs induced by thiosulfate (S2O32-). A positively charged bilayer of the surfactant cetyltrimethylammonium bromide on the Au NR surfaces facilitates the electrostatic adsorption of S 2O32-, and the longitudinal surface plasmon resonance absorption of S2O32-/Au NRs that are produced is slightly decreased. The formation of Pb-Au alloys on the surfaces of Au NRs leads to a significant decrease in the electrode potential of gold; thus, increasing the dissolution rate of the gold, which is dependent on the Pb2+ ion concentration. Using matrix-assisted laser desorption/ionization mass spectrometry, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy, we proved that Pb-Au alloys were formed on the Au NR surfaces in the presence of Pb2+ ions and S 2O32-. The reaction temperature and time, the buffer pH, and the S2O32- concentration are important parameters in determining the sensitivity and selectivity of the method for sensing Pb2+ ions. Under the optimum conditions (3.0 mM S2O32-, 51 pM Au NRs, 10 mM Tris-HCl buffer, and pH 8.0), the limit of detection for Pb2+ ions, giving a signal-to-noise ratio of 3, was 4.3 nM. We used this nanosensor system to determine Pb2+ ions in complex real samples (lake, pond, seawater, urine, and soil samples), and found that this approach offers advantages in terms of its simplicity, accuracy, and precision (the relative standard deviations of triplicate analyses of each sample were below 3%).

原文English
頁(從 - 到)7234-7242
頁數9
期刊Analytical Methods
6
發行號18
DOIs
出版狀態Published - 2014 九月 21

指紋

Nanorods
Gold
Leaching
Lead
Ions
Buffers
Nanosensors
Thiosulfates
Surface plasmon resonance
Ponds
Seawater
Surface-Active Agents
Ionization
Mass spectrometry
Lakes
Electrostatics
Desorption
Signal to noise ratio
Dissolution
Surface active agents

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Chemical Engineering(all)
  • Engineering(all)

引用此文

@article{e9b5c17ee22846f39cb63978ac3f2082,
title = "A non-aggregation colorimetric method for trace lead(ii) ions based on the leaching of gold nanorods",
abstract = "We report a simple and fast colorimetric method using gold nanorods (Au NRs) as sensing probes to detect Pb2+ ions in complex real samples. The method is based on Pb2+ ions increasing the leaching rate of Au NRs induced by thiosulfate (S2O32-). A positively charged bilayer of the surfactant cetyltrimethylammonium bromide on the Au NR surfaces facilitates the electrostatic adsorption of S 2O32-, and the longitudinal surface plasmon resonance absorption of S2O32-/Au NRs that are produced is slightly decreased. The formation of Pb-Au alloys on the surfaces of Au NRs leads to a significant decrease in the electrode potential of gold; thus, increasing the dissolution rate of the gold, which is dependent on the Pb2+ ion concentration. Using matrix-assisted laser desorption/ionization mass spectrometry, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy, we proved that Pb-Au alloys were formed on the Au NR surfaces in the presence of Pb2+ ions and S 2O32-. The reaction temperature and time, the buffer pH, and the S2O32- concentration are important parameters in determining the sensitivity and selectivity of the method for sensing Pb2+ ions. Under the optimum conditions (3.0 mM S2O32-, 51 pM Au NRs, 10 mM Tris-HCl buffer, and pH 8.0), the limit of detection for Pb2+ ions, giving a signal-to-noise ratio of 3, was 4.3 nM. We used this nanosensor system to determine Pb2+ ions in complex real samples (lake, pond, seawater, urine, and soil samples), and found that this approach offers advantages in terms of its simplicity, accuracy, and precision (the relative standard deviations of triplicate analyses of each sample were below 3{\%}).",
author = "Lan, {Yu Jing} and Lin, {Yang Wei}",
year = "2014",
month = "9",
day = "21",
doi = "10.1039/c4ay00972j",
language = "English",
volume = "6",
pages = "7234--7242",
journal = "Analytical Methods",
issn = "1759-9660",
publisher = "Royal Society of Chemistry",
number = "18",

}

TY - JOUR

T1 - A non-aggregation colorimetric method for trace lead(ii) ions based on the leaching of gold nanorods

AU - Lan, Yu Jing

AU - Lin, Yang Wei

PY - 2014/9/21

Y1 - 2014/9/21

N2 - We report a simple and fast colorimetric method using gold nanorods (Au NRs) as sensing probes to detect Pb2+ ions in complex real samples. The method is based on Pb2+ ions increasing the leaching rate of Au NRs induced by thiosulfate (S2O32-). A positively charged bilayer of the surfactant cetyltrimethylammonium bromide on the Au NR surfaces facilitates the electrostatic adsorption of S 2O32-, and the longitudinal surface plasmon resonance absorption of S2O32-/Au NRs that are produced is slightly decreased. The formation of Pb-Au alloys on the surfaces of Au NRs leads to a significant decrease in the electrode potential of gold; thus, increasing the dissolution rate of the gold, which is dependent on the Pb2+ ion concentration. Using matrix-assisted laser desorption/ionization mass spectrometry, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy, we proved that Pb-Au alloys were formed on the Au NR surfaces in the presence of Pb2+ ions and S 2O32-. The reaction temperature and time, the buffer pH, and the S2O32- concentration are important parameters in determining the sensitivity and selectivity of the method for sensing Pb2+ ions. Under the optimum conditions (3.0 mM S2O32-, 51 pM Au NRs, 10 mM Tris-HCl buffer, and pH 8.0), the limit of detection for Pb2+ ions, giving a signal-to-noise ratio of 3, was 4.3 nM. We used this nanosensor system to determine Pb2+ ions in complex real samples (lake, pond, seawater, urine, and soil samples), and found that this approach offers advantages in terms of its simplicity, accuracy, and precision (the relative standard deviations of triplicate analyses of each sample were below 3%).

AB - We report a simple and fast colorimetric method using gold nanorods (Au NRs) as sensing probes to detect Pb2+ ions in complex real samples. The method is based on Pb2+ ions increasing the leaching rate of Au NRs induced by thiosulfate (S2O32-). A positively charged bilayer of the surfactant cetyltrimethylammonium bromide on the Au NR surfaces facilitates the electrostatic adsorption of S 2O32-, and the longitudinal surface plasmon resonance absorption of S2O32-/Au NRs that are produced is slightly decreased. The formation of Pb-Au alloys on the surfaces of Au NRs leads to a significant decrease in the electrode potential of gold; thus, increasing the dissolution rate of the gold, which is dependent on the Pb2+ ion concentration. Using matrix-assisted laser desorption/ionization mass spectrometry, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy, we proved that Pb-Au alloys were formed on the Au NR surfaces in the presence of Pb2+ ions and S 2O32-. The reaction temperature and time, the buffer pH, and the S2O32- concentration are important parameters in determining the sensitivity and selectivity of the method for sensing Pb2+ ions. Under the optimum conditions (3.0 mM S2O32-, 51 pM Au NRs, 10 mM Tris-HCl buffer, and pH 8.0), the limit of detection for Pb2+ ions, giving a signal-to-noise ratio of 3, was 4.3 nM. We used this nanosensor system to determine Pb2+ ions in complex real samples (lake, pond, seawater, urine, and soil samples), and found that this approach offers advantages in terms of its simplicity, accuracy, and precision (the relative standard deviations of triplicate analyses of each sample were below 3%).

UR - http://www.scopus.com/inward/record.url?scp=84906696528&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84906696528&partnerID=8YFLogxK

U2 - 10.1039/c4ay00972j

DO - 10.1039/c4ay00972j

M3 - Article

AN - SCOPUS:84906696528

VL - 6

SP - 7234

EP - 7242

JO - Analytical Methods

JF - Analytical Methods

SN - 1759-9660

IS - 18

ER -