TY - JOUR
T1 - Two-sided equivalence on the special linear group
AU - Chang, Shu Chu
AU - Lee, Cheng
N1 - Funding Information:
* Research partially supported by the National Science Council of the Republic of China, NSC 84-2121-M-018-001 and NSC 84-2121-M-018-002.
PY - 1996/10
Y1 - 1996/10
N2 - We give a canonical form for the double cosets of Γ = SL(r + s, Z) with respect to the congruence subgroup Γ0(n; r, s) with r = s, and determine the number of the double cosets.
AB - We give a canonical form for the double cosets of Γ = SL(r + s, Z) with respect to the congruence subgroup Γ0(n; r, s) with r = s, and determine the number of the double cosets.
UR - http://www.scopus.com/inward/record.url?scp=26244452553&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=26244452553&partnerID=8YFLogxK
U2 - 10.1016/0024-3795(94)00352-1
DO - 10.1016/0024-3795(94)00352-1
M3 - Article
AN - SCOPUS:26244452553
VL - 246
SP - 191
EP - 202
JO - Linear Algebra and Its Applications
JF - Linear Algebra and Its Applications
SN - 0024-3795
ER -