The dynamics of a slider-crank mechanism with an initially curved coupler under two-component parametric resonance

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

The objective of this paper is to study the dynamics and dynamic instability of a slider-crank mechanism with an initially curved coupler under parametric resonance. An attention is given to the phenomena arising due to initial curvature, geometric imperfection, of a connecting rod and modal interactions produced by the existence of two-component parametric resonance. The two-component parametric resonance can occur, for example, when the fundamental frequency of the flexible part of a slider-crank mechanism is close to one-half of the excitation frequency and simultaneously the difference between the first and the second natural frequencies is near the frequency of excitation. It is known that for the case of one-component parametric resonance, an initially curved connecting rod enlarges the amplitude of fundamental mode of vibration significantly only if the motion is in the vicinity of the secondary region of instability. In other words, the initial curvature of a coupler plays no effects to the fundamental response of the system if the oscillation is near the primary region of instability. However, result of present study shows that under the condition of two-component parametric resonance, unlike the case of one-component parametric resonance, an initially curved linkage can result significant effects to the vibration of the system even if the motion is close to the primary region of instability. In addition, the result also indicates that the growth of small amplitude vibration into large motion regime occurs if vibrations arise near the boundary of stable region.

Original languageEnglish
Pages (from-to)815-835
Number of pages21
JournalJournal of Sound and Vibration
Volume280
Issue number3-5
DOIs
Publication statusPublished - 2005 Feb 23

Fingerprint

eccentrics
chutes
couplers
Connecting rods
vibration
rods
curvature
linkages
excitation
resonant frequencies
vibration mode
Natural frequencies
Defects
oscillations
defects
interactions

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanics of Materials
  • Acoustics and Ultrasonics
  • Mechanical Engineering

Cite this

@article{f3c419ba720d4a9d9e6ce30138efaec7,
title = "The dynamics of a slider-crank mechanism with an initially curved coupler under two-component parametric resonance",
abstract = "The objective of this paper is to study the dynamics and dynamic instability of a slider-crank mechanism with an initially curved coupler under parametric resonance. An attention is given to the phenomena arising due to initial curvature, geometric imperfection, of a connecting rod and modal interactions produced by the existence of two-component parametric resonance. The two-component parametric resonance can occur, for example, when the fundamental frequency of the flexible part of a slider-crank mechanism is close to one-half of the excitation frequency and simultaneously the difference between the first and the second natural frequencies is near the frequency of excitation. It is known that for the case of one-component parametric resonance, an initially curved connecting rod enlarges the amplitude of fundamental mode of vibration significantly only if the motion is in the vicinity of the secondary region of instability. In other words, the initial curvature of a coupler plays no effects to the fundamental response of the system if the oscillation is near the primary region of instability. However, result of present study shows that under the condition of two-component parametric resonance, unlike the case of one-component parametric resonance, an initially curved linkage can result significant effects to the vibration of the system even if the motion is close to the primary region of instability. In addition, the result also indicates that the growth of small amplitude vibration into large motion regime occurs if vibrations arise near the boundary of stable region.",
author = "Wang, {Yi Ming}",
year = "2005",
month = "2",
day = "23",
doi = "10.1016/j.jsv.2003.12.037",
language = "English",
volume = "280",
pages = "815--835",
journal = "Journal of Sound and Vibration",
issn = "0022-460X",
publisher = "Academic Press Inc.",
number = "3-5",

}

TY - JOUR

T1 - The dynamics of a slider-crank mechanism with an initially curved coupler under two-component parametric resonance

AU - Wang, Yi Ming

PY - 2005/2/23

Y1 - 2005/2/23

N2 - The objective of this paper is to study the dynamics and dynamic instability of a slider-crank mechanism with an initially curved coupler under parametric resonance. An attention is given to the phenomena arising due to initial curvature, geometric imperfection, of a connecting rod and modal interactions produced by the existence of two-component parametric resonance. The two-component parametric resonance can occur, for example, when the fundamental frequency of the flexible part of a slider-crank mechanism is close to one-half of the excitation frequency and simultaneously the difference between the first and the second natural frequencies is near the frequency of excitation. It is known that for the case of one-component parametric resonance, an initially curved connecting rod enlarges the amplitude of fundamental mode of vibration significantly only if the motion is in the vicinity of the secondary region of instability. In other words, the initial curvature of a coupler plays no effects to the fundamental response of the system if the oscillation is near the primary region of instability. However, result of present study shows that under the condition of two-component parametric resonance, unlike the case of one-component parametric resonance, an initially curved linkage can result significant effects to the vibration of the system even if the motion is close to the primary region of instability. In addition, the result also indicates that the growth of small amplitude vibration into large motion regime occurs if vibrations arise near the boundary of stable region.

AB - The objective of this paper is to study the dynamics and dynamic instability of a slider-crank mechanism with an initially curved coupler under parametric resonance. An attention is given to the phenomena arising due to initial curvature, geometric imperfection, of a connecting rod and modal interactions produced by the existence of two-component parametric resonance. The two-component parametric resonance can occur, for example, when the fundamental frequency of the flexible part of a slider-crank mechanism is close to one-half of the excitation frequency and simultaneously the difference between the first and the second natural frequencies is near the frequency of excitation. It is known that for the case of one-component parametric resonance, an initially curved connecting rod enlarges the amplitude of fundamental mode of vibration significantly only if the motion is in the vicinity of the secondary region of instability. In other words, the initial curvature of a coupler plays no effects to the fundamental response of the system if the oscillation is near the primary region of instability. However, result of present study shows that under the condition of two-component parametric resonance, unlike the case of one-component parametric resonance, an initially curved linkage can result significant effects to the vibration of the system even if the motion is close to the primary region of instability. In addition, the result also indicates that the growth of small amplitude vibration into large motion regime occurs if vibrations arise near the boundary of stable region.

UR - http://www.scopus.com/inward/record.url?scp=10444271827&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=10444271827&partnerID=8YFLogxK

U2 - 10.1016/j.jsv.2003.12.037

DO - 10.1016/j.jsv.2003.12.037

M3 - Article

AN - SCOPUS:10444271827

VL - 280

SP - 815

EP - 835

JO - Journal of Sound and Vibration

JF - Journal of Sound and Vibration

SN - 0022-460X

IS - 3-5

ER -