The dynamical analysis of a finite inextensible beam with an attached accelerating mass

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

The objective of this paper is an analytical and numerical study of the dynamics of a beam with attached masses. Specifically, a finite inextensible beam that rests on a uniform elastic foundation and carries an accelerating mass is considered. Of interest is the dynamics of the beam-mass system due to the motion of the moving mass. The influence of various parameters such as forward force, retard force and friction upon the performance of the beam are investigated. The mechanics of the problem is Newtonian. Based on the assumption that when the moving mass is set in motion the mass is assumed to be rolling on the beam, the mechanics, including effects due to friction and convective accelerations of the interface between the moving mass and the beam, are determined. The problem of the system is nonlinear, due to the presence of friction and the convective acceleration. In the modeling, the mass can be accelerated by a force. Meanwhile, the mass is capable of reducing speed and being brought to a stop at any position on the beam by applying a retard force to the mass and/or increasing the friction between the mass and the beam. The force is assumed to be tangential to the deformed configuration of the beam. By employing the Galerkin procedure, the partial differential equations which describe the transient vibrations of the beam-mass system are reduced to an initial value problem with finite dimensions. The method of numerical integration is used to get convergent solutions.

Original languageEnglish
Pages (from-to)831-854
Number of pages24
JournalInternational Journal of Solids and Structures
Volume35
Issue number9-10
DOIs
Publication statusPublished - 1998 Jan 1

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Applied Mathematics

Cite this