Abstract
Layers of MoS2 are directly deposited on the n-type Si (n-Si) substrate by chemical vapor deposition for fabricating a MoS2/n-Si heterojunction device. The rectification current–voltage (I–V) characteristics of MoS2/n-Si devices were measured in the temperature range from 80 to 300 K in steps of 20 K. The temperature-dependent forward-bias I–V characteristics can be explained on the basis of the thermionic emission theory by considering the presence of the interfacial inhomogeneous barriers at the MoS2/n-Si interfaces. The dominance of the induced carrier capture/recombination by states at the MoS2/n-Si interface that lead to the formation of the inhomogeneous barriers serves to influence the photo-response at room temperature. The fabricated MoS2/n-Si devices exhibit reversible switching between high and low current densities, when the simulated sunlight is turned on and off. The sensitivity of the I–V characteristics to temperature provides an opportunity to realize stable and reliable rectification behaviors in the MoS2/n-Si devices. It is found that the electron mobility in the n-Si layer reduces as temperature increases, which leads to the noticeably increased value of the series resistance of MoS2/n-Si devices.
Original language | English |
---|---|
Pages (from-to) | 374-378 |
Number of pages | 5 |
Journal | Microelectronics Reliability |
Volume | 78 |
DOIs | |
Publication status | Published - 2017 Nov |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Safety, Risk, Reliability and Quality
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Electrical and Electronic Engineering