Spectroscopic and kinetic studies of the reaction of bromopropanesulfonate with methyl-coenzyme M reductase

Ryan C. Kunz, Yih Chern Horng, Stephen W. Ragsdale

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)


Methyl-coenzyme M reductase (MCR) catalyzes the final step of methanogenesis in which coenzyme B and methyl-coenzyme M are converted to methane and the heterodisulfide, CoMS-SCoB. MCR also appears to initiate anaerobic methane oxidation (reverse methanogenesis). At the active site of MCR is coenzyme F430, a nickel tetrapyrrole. This paper describes the reaction of the active MCRred1 state with the potent inhibitor, 3-bromopropanesulfonate (BPS; I50 = 50 nM) by UV-visible and EPR spectroscopy and by steady-state and rapid kinetics. BPS was shown to be an alternative substrate of MCR in an ionic reaction that is coenzyme B-independent and leads to debromination of BPS and formation of a distinct state ("MCRPS") with an EPR signal that was assigned to a Ni(III)-propylsulfonate species (Hinderberger, D., Piskorski, R. P., Goenrich, M., Thauer, R. K., Schweiger, A., Harmer, J., and Jaun, B. (2006) Angew. Chem. Int. Ed. Engl. 45, 3602-3607). A similar EPR signal was generated by reacting MCRred1 with several halogenated sulfonate and carboxylate substrates. In rapid chemical quench experiments, the propylsulfonate ligand was identified by NMR spectroscopy and high performance liquid chromatography as propanesulfonic acid after protonolysis of the MCRPS complex. Propanesulfonate formation was also observed in steady-state reactions in the presence of Ti(III) citrate. Reaction of the alkylnickel intermediate with thiols regenerates the active MCRred1 state and eliminates the propylsulfonate group, presumably as the thioether. MCRPS is catalytically competent in both the generation of propanesulfonate and reformation of MCRred1. These results provide evidence for the intermediacy of an alkylnickel species in the final step in anaerobic methane oxidation and in the initial step of methanogenesis.

Original languageEnglish
Pages (from-to)34663-34676
Number of pages14
JournalJournal of Biological Chemistry
Issue number45
Publication statusPublished - 2006 Nov 10

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Spectroscopic and kinetic studies of the reaction of bromopropanesulfonate with methyl-coenzyme M reductase'. Together they form a unique fingerprint.

Cite this