Spacelike Spherically Symmetric CMC Foliation in the Extended Schwarzschild Spacetime

Kuo-Wei Lee, Yng Ing Lee

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We first summarize the characterization of smooth spacelike spherically symmetric constant mean curvature (SS-CMC) hypersurfaces in the Schwarzschild spacetime and Kruskal extension. Then use the characterization to prove special SS-CMC foliation property, and verify part of the conjecture by Malec and Ó Murchadha (Phys Rev D (3) 68:124019, 2003).

Original languageEnglish
Pages (from-to)1477-1503
Number of pages27
JournalAnnales Henri Poincare
Volume17
Issue number6
DOIs
Publication statusPublished - 2016 Jun 1

Fingerprint

Constant Mean Curvature
Foliation
Space-time
curvature
Hypersurface
Verify

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Nuclear and High Energy Physics
  • Mathematical Physics

Cite this

@article{9cf1e4a616664716b09ec287233cdfb1,
title = "Spacelike Spherically Symmetric CMC Foliation in the Extended Schwarzschild Spacetime",
abstract = "We first summarize the characterization of smooth spacelike spherically symmetric constant mean curvature (SS-CMC) hypersurfaces in the Schwarzschild spacetime and Kruskal extension. Then use the characterization to prove special SS-CMC foliation property, and verify part of the conjecture by Malec and {\'O} Murchadha (Phys Rev D (3) 68:124019, 2003).",
author = "Kuo-Wei Lee and Lee, {Yng Ing}",
year = "2016",
month = "6",
day = "1",
doi = "10.1007/s00023-015-0432-y",
language = "English",
volume = "17",
pages = "1477--1503",
journal = "Annales Henri Poincare",
issn = "1424-0637",
publisher = "Birkhauser Verlag Basel",
number = "6",

}

Spacelike Spherically Symmetric CMC Foliation in the Extended Schwarzschild Spacetime. / Lee, Kuo-Wei; Lee, Yng Ing.

In: Annales Henri Poincare, Vol. 17, No. 6, 01.06.2016, p. 1477-1503.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Spacelike Spherically Symmetric CMC Foliation in the Extended Schwarzschild Spacetime

AU - Lee, Kuo-Wei

AU - Lee, Yng Ing

PY - 2016/6/1

Y1 - 2016/6/1

N2 - We first summarize the characterization of smooth spacelike spherically symmetric constant mean curvature (SS-CMC) hypersurfaces in the Schwarzschild spacetime and Kruskal extension. Then use the characterization to prove special SS-CMC foliation property, and verify part of the conjecture by Malec and Ó Murchadha (Phys Rev D (3) 68:124019, 2003).

AB - We first summarize the characterization of smooth spacelike spherically symmetric constant mean curvature (SS-CMC) hypersurfaces in the Schwarzschild spacetime and Kruskal extension. Then use the characterization to prove special SS-CMC foliation property, and verify part of the conjecture by Malec and Ó Murchadha (Phys Rev D (3) 68:124019, 2003).

UR - http://www.scopus.com/inward/record.url?scp=84944576143&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84944576143&partnerID=8YFLogxK

U2 - 10.1007/s00023-015-0432-y

DO - 10.1007/s00023-015-0432-y

M3 - Article

VL - 17

SP - 1477

EP - 1503

JO - Annales Henri Poincare

JF - Annales Henri Poincare

SN - 1424-0637

IS - 6

ER -