Abstract
Solutions of the n-th order linear ordinary differential equations (z + b)lΠn-1k=1(z+ak)φn + ∑nk=1φn-k{Cλk{Q(z)}k + Cλk-1{G(z)}k-1} = f (z ≠ -ak (k = 1,2,...,n - 1) z ≠-b; ai ≠ aj ≠ b i f i ≠ j; n > l, l ≥ 2) and the partial differential equations (z + b)lΠn-1k=1(z + ak) · ∂nμ/∂zn + ∑n-1k=1 ∂n-kμ/∂zn-k{Cλ k{Q(z)}k + Cλk-1{G(z)}k-1} +αμ(z,t) = M∂2μ/∂t2 + N∂μ/∂t (z ≠ -ak (k= 1,2,...,n-l) z ≠ -b; ai ≠ aj ≠ b i f i ≠ j; n > l, l ≥ 2) are discussed.
Original language | English |
---|---|
Pages (from-to) | 499-515 |
Number of pages | 17 |
Journal | Taiwanese Journal of Mathematics |
Volume | 1 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1997 Jan 1 |
Fingerprint
All Science Journal Classification (ASJC) codes
- Mathematics(all)
Cite this
}
Solutions of a class of n-th order ordinary and partial differential equations via fractional calculus. / Tu, Shih Tong; Luo, Wen Chieh; Chin, Erh-Tsung.
In: Taiwanese Journal of Mathematics, Vol. 1, No. 4, 01.01.1997, p. 499-515.Research output: Contribution to journal › Article
TY - JOUR
T1 - Solutions of a class of n-th order ordinary and partial differential equations via fractional calculus
AU - Tu, Shih Tong
AU - Luo, Wen Chieh
AU - Chin, Erh-Tsung
PY - 1997/1/1
Y1 - 1997/1/1
N2 - Solutions of the n-th order linear ordinary differential equations (z + b)lΠn-1k=1(z+ak)φn + ∑nk=1φn-k{Cλk{Q(z)}k + Cλk-1{G(z)}k-1} = f (z ≠ -ak (k = 1,2,...,n - 1) z ≠-b; ai ≠ aj ≠ b i f i ≠ j; n > l, l ≥ 2) and the partial differential equations (z + b)lΠn-1k=1(z + ak) · ∂nμ/∂zn + ∑n-1k=1 ∂n-kμ/∂zn-k{Cλ k{Q(z)}k + Cλk-1{G(z)}k-1} +αμ(z,t) = M∂2μ/∂t2 + N∂μ/∂t (z ≠ -ak (k= 1,2,...,n-l) z ≠ -b; ai ≠ aj ≠ b i f i ≠ j; n > l, l ≥ 2) are discussed.
AB - Solutions of the n-th order linear ordinary differential equations (z + b)lΠn-1k=1(z+ak)φn + ∑nk=1φn-k{Cλk{Q(z)}k + Cλk-1{G(z)}k-1} = f (z ≠ -ak (k = 1,2,...,n - 1) z ≠-b; ai ≠ aj ≠ b i f i ≠ j; n > l, l ≥ 2) and the partial differential equations (z + b)lΠn-1k=1(z + ak) · ∂nμ/∂zn + ∑n-1k=1 ∂n-kμ/∂zn-k{Cλ k{Q(z)}k + Cλk-1{G(z)}k-1} +αμ(z,t) = M∂2μ/∂t2 + N∂μ/∂t (z ≠ -ak (k= 1,2,...,n-l) z ≠ -b; ai ≠ aj ≠ b i f i ≠ j; n > l, l ≥ 2) are discussed.
UR - http://www.scopus.com/inward/record.url?scp=0345941656&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0345941656&partnerID=8YFLogxK
U2 - 10.11650/twjm/1500406125
DO - 10.11650/twjm/1500406125
M3 - Article
AN - SCOPUS:0345941656
VL - 1
SP - 499
EP - 515
JO - Taiwanese Journal of Mathematics
JF - Taiwanese Journal of Mathematics
SN - 1027-5487
IS - 4
ER -