Smart global maximum power point tracking controller of photovoltaic module arrays

Long Yi Chang, Yi Nung Chung, Kuei Hsiang Chao, Jia Jing Kao

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

This study first explored the effect of shading on the output characteristics of modules in a photovoltaic module array. Next, a modified particle swarm optimization (PSO) method was employed to track the maximum power point of the multiple-peak characteristic curve of the array. Through the optimization method, the weighting value and cognition learning factor decreased with an increasing number of iterations, whereas the social learning factor increased, thereby enhancing the tracking capability of a maximum power point tracker. In addition, the weighting value was slightly modified on the basis of the changes in the slope and power of the characteristic curve to increase the tracking speed and stability of the tracker. Finally, a PIC18F8720 microcontroller was coordinated with peripheral hardware circuits to realize the proposed PSO method, which was then adopted to track the maximum power point of the power-voltage (P-V) output characteristic curve of the photovoltaic module array under shading. Subsequently, tests were conducted to verify that the modified PSO method exhibited favorable tracking speed and accuracy.

Original languageEnglish
Article numberen11030567
JournalEnergies
Volume11
Issue number3
DOIs
Publication statusPublished - 2018 Feb 25

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Smart global maximum power point tracking controller of photovoltaic module arrays'. Together they form a unique fingerprint.

  • Cite this