Secure certificateless signature resisting to continual leakage attacks

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

Recently, numerous leakage-resilient cryptographic schemes have been proposed to resist side-channel attacks which adopt several properties resulting from practical implementations of cryptographic protocols/schemes to leak partial information of secret (or private) keys. Certificateless public key cryptography solves both certificate management problem in conventional public key cryptography and the key escrow problem in ID-based public key cryptography. However, there is little work on studying the design of certificateless cryptographic schemes resisting to side-channel attacks. In the article, the first leakage-resilient certificateless signature (LR-CLS) scheme is proposed. In the generic bilinear group model, the proposed scheme is demonstrated to possess existential unforgeability against adaptive chosen-message attacks under the continual leakage model for both Type I and Type II adversaries.

Original languageEnglish
Title of host publicationProceedings of the 2017 IEEE International Conference on Applied System Innovation
Subtitle of host publicationApplied System Innovation for Modern Technology, ICASI 2017
EditorsTeen-Hang Meen, Artde Donald Kin-Tak Lam, Stephen D. Prior
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1263-1266
Number of pages4
ISBN (Electronic)9781509048977
DOIs
Publication statusPublished - 2017 Jul 21
Event2017 IEEE International Conference on Applied System Innovation, ICASI 2017 - Sapporo, Japan
Duration: 2017 May 132017 May 17

Publication series

NameProceedings of the 2017 IEEE International Conference on Applied System Innovation: Applied System Innovation for Modern Technology, ICASI 2017

Other

Other2017 IEEE International Conference on Applied System Innovation, ICASI 2017
CountryJapan
CitySapporo
Period17-05-1317-05-17

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Computer Science Applications
  • Hardware and Architecture
  • Safety, Risk, Reliability and Quality
  • Mechanical Engineering
  • Media Technology
  • Health Informatics
  • Instrumentation

Fingerprint Dive into the research topics of 'Secure certificateless signature resisting to continual leakage attacks'. Together they form a unique fingerprint.

  • Cite this

    Tseng, Y. M., Huang, S. S., & Wu, J. D. (2017). Secure certificateless signature resisting to continual leakage attacks. In T-H. Meen, A. D. K-T. Lam, & S. D. Prior (Eds.), Proceedings of the 2017 IEEE International Conference on Applied System Innovation: Applied System Innovation for Modern Technology, ICASI 2017 (pp. 1263-1266). [7988127] (Proceedings of the 2017 IEEE International Conference on Applied System Innovation: Applied System Innovation for Modern Technology, ICASI 2017). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICASI.2017.7988127