Relationship between structure of conjugated oxime esters and their ability to cleave DNA

Jih Ru Hwu, Shwu Chen Tsay, Shih Chin Hong, Ming Hua Hsu, Chih Fen Liu, Shang Shing P. Chou

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


The size and geometry of polycycles are critical to intercalation into DNA. This work involves the establishment of a new compound library that includes 35 O-benzoyl oxime esters with intercalators of five types. These conjugated compounds were synthesized by the condensation of substituted benzoyl chlorides (XC6H4COCl; X = H, Me, CN, F, and NO2) or naphthoyl chlorides with oximes of fluoren-9-one, 9,10-anthraquinone, xanthen-9-one, thioxanthen-9-one, and 9H-thioxanthen-9-one 10,10-dioxide to give the corresponding esters in 80-99% yields. All of these compounds could cleave DNA when photolyzed by UV light. Of these conjugates, 9,10-anthraquinone-O-9-(4- fluorobenzoyl)oxime with a binding constant of 4.49 × 104 M-1 cleaved DNA most efficiently. Examination of the structure-activity relationship supports a conclusion that two factors affect DNA-cleaving potency. These are (1) the planarity of the intercalating moiety, and (2) the size and substituents of the benzoyl ring. The DNA-cleaving ability followed the order 9,10-anthraquinone > fluoren-9-one ≥ xanthen-9-one ∼ thioxanthen-9-one > 9H-thioxanthen-9-one 10,10-dioxide. The benzoyl-containing oxime ester conjugates were more active than the corresponding naphthoyl-containing conjugates. The potency that was associated with the different substituents on the benzoyl ring followed the order F > CN ≥ NO2 > Me ∼ H.

Original languageEnglish
Pages (from-to)1778-1783
Number of pages6
JournalBioconjugate Chemistry
Issue number11
Publication statusPublished - 2013 Nov 20

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Biomedical Engineering
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry

Fingerprint Dive into the research topics of 'Relationship between structure of conjugated oxime esters and their ability to cleave DNA'. Together they form a unique fingerprint.

Cite this