Power commuting additive maps on invertible or singular matrices

Cheng Kai Liu, Jheng Jie Yang

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Let F be a field and let Mn(F) be the ring of all n×n matrices over F, where n≥2 is an integer. We characterize additive maps f:Mn(F)→Mn(F) satisfying f(x)xm=xmf(x) for all invertible (singular) x∈Mn(F), where m≥2 is an integer.

Original languageEnglish
Pages (from-to)127-149
Number of pages23
JournalLinear Algebra and Its Applications
Volume530
DOIs
Publication statusPublished - 2017 Oct 1

Fingerprint

Invertible matrix
Singular matrix
Integer
Invertible
Ring

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory
  • Numerical Analysis
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics

Cite this

@article{8d5a1977c06f40e589008ca42ad7c674,
title = "Power commuting additive maps on invertible or singular matrices",
abstract = "Let F be a field and let Mn(F) be the ring of all n×n matrices over F, where n≥2 is an integer. We characterize additive maps f:Mn(F)→Mn(F) satisfying f(x)xm=xmf(x) for all invertible (singular) x∈Mn(F), where m≥2 is an integer.",
author = "Liu, {Cheng Kai} and Yang, {Jheng Jie}",
year = "2017",
month = "10",
day = "1",
doi = "10.1016/j.laa.2017.04.038",
language = "English",
volume = "530",
pages = "127--149",
journal = "Linear Algebra and Its Applications",
issn = "0024-3795",
publisher = "Elsevier Inc.",

}

Power commuting additive maps on invertible or singular matrices. / Liu, Cheng Kai; Yang, Jheng Jie.

In: Linear Algebra and Its Applications, Vol. 530, 01.10.2017, p. 127-149.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Power commuting additive maps on invertible or singular matrices

AU - Liu, Cheng Kai

AU - Yang, Jheng Jie

PY - 2017/10/1

Y1 - 2017/10/1

N2 - Let F be a field and let Mn(F) be the ring of all n×n matrices over F, where n≥2 is an integer. We characterize additive maps f:Mn(F)→Mn(F) satisfying f(x)xm=xmf(x) for all invertible (singular) x∈Mn(F), where m≥2 is an integer.

AB - Let F be a field and let Mn(F) be the ring of all n×n matrices over F, where n≥2 is an integer. We characterize additive maps f:Mn(F)→Mn(F) satisfying f(x)xm=xmf(x) for all invertible (singular) x∈Mn(F), where m≥2 is an integer.

UR - http://www.scopus.com/inward/record.url?scp=85019408598&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85019408598&partnerID=8YFLogxK

U2 - 10.1016/j.laa.2017.04.038

DO - 10.1016/j.laa.2017.04.038

M3 - Article

AN - SCOPUS:85019408598

VL - 530

SP - 127

EP - 149

JO - Linear Algebra and Its Applications

JF - Linear Algebra and Its Applications

SN - 0024-3795

ER -