Numerical simulation and experimental validation of novel hyperelastic micro-motion manipulator for water conserving device

Yi-Cheng Huang, Huan Chu Hsu

Research output: Contribution to journalArticle

Abstract

The aim of this study was to evaluate a novel water-conserving micro-motion manipulator (manipulator) for application in the fluid flow rate regulator of a faucet through numerical simulation and experimental validation. The manipulator was analyzed with various diameters of the water channel. When the channel is narrow, the water flow rate decreases, and the water channel becomes narrower as the inlet water pressure increases. Moreover, the water channel returns to the rest position and provides the required minimum flow rate when the inlet water pressure is minimum. The behavior of the manipulator was simulated using the fluid–structure interaction model of COMSOL multiphysics. The Mooney–Rivlin two-parameter model was used for the simulation. This study employed two methods to obtain the coefficients C10 and C01. The first method was performed according to Gent’s relation, a relation between the ASTM D2240 Shore hardness and Young’s modulus. The second method was employed to validate the coefficients during the simulation on the basis of tensile tests performed according to ASTM 412-C. Through the simulations and laboratory testing, the manipulator complies with the requirements of the California Energy Commission (CEC) and U.S. Environmental Protection Agency (EPA). The results show that the physical samples of the manipulator installed in the water-conserving regulators complied with the CEC and EPA standards. The experimental validation results confirmed the suitability of the numerical simulation in predicting the water-conserving performance of the manipulator with respect to the inlet water pressure by using a hyperelastic silicone rubber material.

Original languageEnglish
Pages (from-to)1-11
Number of pages11
JournalMicrosystem Technologies
DOIs
Publication statusAccepted/In press - 2017 Dec 21

Fingerprint

Manipulators
manipulators
inlet pressure
Water
Computer simulation
Aquaporins
water pressure
water
simulation
flow velocity
regulators
Flow rate
Environmental Protection Agency
silicone rubber
Silicone Elastomers
water flow
coefficients
tensile tests
fluid flow
Flow of fluids

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Hardware and Architecture
  • Electrical and Electronic Engineering

Cite this

@article{4f9d9a52a521419daf87773326f02197,
title = "Numerical simulation and experimental validation of novel hyperelastic micro-motion manipulator for water conserving device",
abstract = "The aim of this study was to evaluate a novel water-conserving micro-motion manipulator (manipulator) for application in the fluid flow rate regulator of a faucet through numerical simulation and experimental validation. The manipulator was analyzed with various diameters of the water channel. When the channel is narrow, the water flow rate decreases, and the water channel becomes narrower as the inlet water pressure increases. Moreover, the water channel returns to the rest position and provides the required minimum flow rate when the inlet water pressure is minimum. The behavior of the manipulator was simulated using the fluid–structure interaction model of COMSOL multiphysics. The Mooney–Rivlin two-parameter model was used for the simulation. This study employed two methods to obtain the coefficients C10 and C01. The first method was performed according to Gent’s relation, a relation between the ASTM D2240 Shore hardness and Young’s modulus. The second method was employed to validate the coefficients during the simulation on the basis of tensile tests performed according to ASTM 412-C. Through the simulations and laboratory testing, the manipulator complies with the requirements of the California Energy Commission (CEC) and U.S. Environmental Protection Agency (EPA). The results show that the physical samples of the manipulator installed in the water-conserving regulators complied with the CEC and EPA standards. The experimental validation results confirmed the suitability of the numerical simulation in predicting the water-conserving performance of the manipulator with respect to the inlet water pressure by using a hyperelastic silicone rubber material.",
author = "Yi-Cheng Huang and Hsu, {Huan Chu}",
year = "2017",
month = "12",
day = "21",
doi = "10.1007/s00542-017-3680-6",
language = "English",
pages = "1--11",
journal = "Microsystem Technologies",
issn = "0946-7076",
publisher = "Springer Verlag",

}

TY - JOUR

T1 - Numerical simulation and experimental validation of novel hyperelastic micro-motion manipulator for water conserving device

AU - Huang, Yi-Cheng

AU - Hsu, Huan Chu

PY - 2017/12/21

Y1 - 2017/12/21

N2 - The aim of this study was to evaluate a novel water-conserving micro-motion manipulator (manipulator) for application in the fluid flow rate regulator of a faucet through numerical simulation and experimental validation. The manipulator was analyzed with various diameters of the water channel. When the channel is narrow, the water flow rate decreases, and the water channel becomes narrower as the inlet water pressure increases. Moreover, the water channel returns to the rest position and provides the required minimum flow rate when the inlet water pressure is minimum. The behavior of the manipulator was simulated using the fluid–structure interaction model of COMSOL multiphysics. The Mooney–Rivlin two-parameter model was used for the simulation. This study employed two methods to obtain the coefficients C10 and C01. The first method was performed according to Gent’s relation, a relation between the ASTM D2240 Shore hardness and Young’s modulus. The second method was employed to validate the coefficients during the simulation on the basis of tensile tests performed according to ASTM 412-C. Through the simulations and laboratory testing, the manipulator complies with the requirements of the California Energy Commission (CEC) and U.S. Environmental Protection Agency (EPA). The results show that the physical samples of the manipulator installed in the water-conserving regulators complied with the CEC and EPA standards. The experimental validation results confirmed the suitability of the numerical simulation in predicting the water-conserving performance of the manipulator with respect to the inlet water pressure by using a hyperelastic silicone rubber material.

AB - The aim of this study was to evaluate a novel water-conserving micro-motion manipulator (manipulator) for application in the fluid flow rate regulator of a faucet through numerical simulation and experimental validation. The manipulator was analyzed with various diameters of the water channel. When the channel is narrow, the water flow rate decreases, and the water channel becomes narrower as the inlet water pressure increases. Moreover, the water channel returns to the rest position and provides the required minimum flow rate when the inlet water pressure is minimum. The behavior of the manipulator was simulated using the fluid–structure interaction model of COMSOL multiphysics. The Mooney–Rivlin two-parameter model was used for the simulation. This study employed two methods to obtain the coefficients C10 and C01. The first method was performed according to Gent’s relation, a relation between the ASTM D2240 Shore hardness and Young’s modulus. The second method was employed to validate the coefficients during the simulation on the basis of tensile tests performed according to ASTM 412-C. Through the simulations and laboratory testing, the manipulator complies with the requirements of the California Energy Commission (CEC) and U.S. Environmental Protection Agency (EPA). The results show that the physical samples of the manipulator installed in the water-conserving regulators complied with the CEC and EPA standards. The experimental validation results confirmed the suitability of the numerical simulation in predicting the water-conserving performance of the manipulator with respect to the inlet water pressure by using a hyperelastic silicone rubber material.

UR - http://www.scopus.com/inward/record.url?scp=85038615540&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85038615540&partnerID=8YFLogxK

U2 - 10.1007/s00542-017-3680-6

DO - 10.1007/s00542-017-3680-6

M3 - Article

AN - SCOPUS:85038615540

SP - 1

EP - 11

JO - Microsystem Technologies

JF - Microsystem Technologies

SN - 0946-7076

ER -