Numerical simulation and experimental validation of heat sinks fabricated using selective laser melting for use in a compact LED recessed downlight

Yi Cheng Huang, Huan Chu Hsu

Research output: Contribution to journalArticle


The aim of this study was to design and fabricate heat sinks with high heat dissipation capacity by using selective laser melting (SLM). A low junction temperature was maintained and the lifetime and reliability of the resultant compact LED recessed downlight (CLDL) was increased. A trapezoidal-finned heat sink with horizontal holes (HFSLM) and three-dimensional metal-foam-like heat sink (3DSLM), which both have large surface-area-to-volume ratios, were designed in this study. Each heat sink was mounted to a 10 W CLDL and installed in a test box with the dimensions 105 mm × 105 mm × 100 mm (L × W × H) for evaluating the lifespan of the CLDL in a high-temperature environment with natural convection. The downlights withstood the test, and according to the Arrhenius equation, they had a long lifetime at normal usage temperatures. The results of the stationary simulations agreed with the experimental results. The temperatures at the solder point of the CLDL with the HFSLM and 3DSLM were 88.6 and 91.4 °C, respectively, corresponding to LED junction temperatures of 118.6 and 121.4 °C. These junction temperatures were lower than the specified LED limit temperature of 135 °C. The results of an accelerated life test prediction and in situ temperature measurement testing based on TM-21 extrapolations using LM-80 data indicated that the lumen maintenance of the CLDLs complied with Energy Star® requirements.

Original languageEnglish
Pages (from-to)121-137
Number of pages17
JournalMicrosystem Technologies
Issue number1
Publication statusPublished - 2019 Jan 9


All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Hardware and Architecture
  • Electrical and Electronic Engineering

Cite this