Nonadditive strong commutativity preserving maps on rank–k matrices over division rings

Cheng-Kai Liu, Pao Kuei Liau, Yuan Tsung Tsai

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Let Mn (픻) be the ring of all n × n matrices over a division ring 픻, wheren ≥ 2 is an integer and let S be the set of all rank-k matrices in Mn (픻), wherek is an integer with 1 ≤ k ≤ n. We characterize maps f: S → Mn (픻) such that [f (x), f (y)] = [x,y] for all x,y ∈ S.

Original languageEnglish
Pages (from-to)563-578
Number of pages16
JournalOperators and Matrices
Volume12
Issue number2
DOIs
Publication statusPublished - 2018 Jun 1

Fingerprint

Division ring or skew field
Commutativity
Integer
Ring

All Science Journal Classification (ASJC) codes

  • Analysis
  • Algebra and Number Theory

Cite this

@article{f82c9d23007d4330b21dcc9b224ee204,
title = "Nonadditive strong commutativity preserving maps on rank–k matrices over division rings",
abstract = "Let Mn (픻) be the ring of all n × n matrices over a division ring 픻, wheren ≥ 2 is an integer and let S be the set of all rank-k matrices in Mn (픻), wherek is an integer with 1 ≤ k ≤ n. We characterize maps f: S → Mn (픻) such that [f (x), f (y)] = [x,y] for all x,y ∈ S.",
author = "Cheng-Kai Liu and Liau, {Pao Kuei} and Tsai, {Yuan Tsung}",
year = "2018",
month = "6",
day = "1",
doi = "10.7153/OAM-2018-12-35",
language = "English",
volume = "12",
pages = "563--578",
journal = "Operators and Matrices",
issn = "1846-3886",
publisher = "Element d.o.o.",
number = "2",

}

Nonadditive strong commutativity preserving maps on rank–k matrices over division rings. / Liu, Cheng-Kai; Liau, Pao Kuei; Tsai, Yuan Tsung.

In: Operators and Matrices, Vol. 12, No. 2, 01.06.2018, p. 563-578.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Nonadditive strong commutativity preserving maps on rank–k matrices over division rings

AU - Liu, Cheng-Kai

AU - Liau, Pao Kuei

AU - Tsai, Yuan Tsung

PY - 2018/6/1

Y1 - 2018/6/1

N2 - Let Mn (픻) be the ring of all n × n matrices over a division ring 픻, wheren ≥ 2 is an integer and let S be the set of all rank-k matrices in Mn (픻), wherek is an integer with 1 ≤ k ≤ n. We characterize maps f: S → Mn (픻) such that [f (x), f (y)] = [x,y] for all x,y ∈ S.

AB - Let Mn (픻) be the ring of all n × n matrices over a division ring 픻, wheren ≥ 2 is an integer and let S be the set of all rank-k matrices in Mn (픻), wherek is an integer with 1 ≤ k ≤ n. We characterize maps f: S → Mn (픻) such that [f (x), f (y)] = [x,y] for all x,y ∈ S.

UR - http://www.scopus.com/inward/record.url?scp=85054075692&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054075692&partnerID=8YFLogxK

U2 - 10.7153/OAM-2018-12-35

DO - 10.7153/OAM-2018-12-35

M3 - Article

VL - 12

SP - 563

EP - 578

JO - Operators and Matrices

JF - Operators and Matrices

SN - 1846-3886

IS - 2

ER -