TY - JOUR
T1 - Nonadditive strong commutativity preserving maps on rank–k matrices over division rings
AU - Liu, Cheng Kai
AU - Liau, Pao Kuei
AU - Tsai, Yuan Tsung
PY - 2018/6
Y1 - 2018/6
N2 - Let Mn (픻) be the ring of all n × n matrices over a division ring 픻, wheren ≥ 2 is an integer and let S be the set of all rank-k matrices in Mn (픻), wherek is an integer with 1 ≤ k ≤ n. We characterize maps f: S → Mn (픻) such that [f (x), f (y)] = [x,y] for all x,y ∈ S.
AB - Let Mn (픻) be the ring of all n × n matrices over a division ring 픻, wheren ≥ 2 is an integer and let S be the set of all rank-k matrices in Mn (픻), wherek is an integer with 1 ≤ k ≤ n. We characterize maps f: S → Mn (픻) such that [f (x), f (y)] = [x,y] for all x,y ∈ S.
UR - http://www.scopus.com/inward/record.url?scp=85054075692&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054075692&partnerID=8YFLogxK
U2 - 10.7153/OAM-2018-12-35
DO - 10.7153/OAM-2018-12-35
M3 - Article
AN - SCOPUS:85054075692
VL - 12
SP - 563
EP - 578
JO - Operators and Matrices
JF - Operators and Matrices
SN - 1846-3886
IS - 2
ER -