Mono- and dinuclear oxidovanadium(v) complexes of an amine-bis(phenolate) ligand with bromo-peroxidase activities: Synthesis, characterization, catalytic, kinetic and computational studies

Mainak Debnath, Malay Dolai, Kaberi Pal, Sourav Bhunya, Ankan Paul, Hon Man Lee, Mahammad Ali

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The mono- and dinuclear oxidovanadium(v) complexes [VVO(L1)(Cl)] (1) and [L1VVO(μ2-O)VO(L1)] (2) of ONNO donor amine-bis(phenolate) ligand (H2L1) were readily synthesized by the reaction between H2L1 and VCl3.(THF)3 or VO(acac)2 in MeOH or MeCN, respectively, and then characterized through mass spectroscopy, 1H-NMR and FTIR techniques. Both the complexes possess distorted octahedral geometry around each V centre. Upon the addition of 1 equivalent or more acid to a MeCN solution of complex 1, it immediately turned into the protonated form, which might be in equilibrium as: [L1ClVVOH]+ ↔ [L1ClVV-OH]+ (in the case of [L1ClVVOH]+ oxo-O is just protonated, whereas in [L1ClVV-OH]+ it is a hydroxo species), with the shift in λmax from 610 nm to 765 nm. Similar was the case for complex 2. The complexes 1 and 2 could efficiently catalyze the oxidative bromination of salicylaldehyde in the presence of H2O2 to produce 5-bromo salicylaldehyde as the major product with TONs of 405 and 450, respectively, in the mixed solvent system (H2O:MeOH:THF = 4:3:2, v/v). The kinetic analysis of the bromide oxidation reaction indicated a first-order mechanism in the protonated peroxidovanadium complex and a bromide ion and limiting first-order mechanism on [H+]. The evaluated kBr and kH values were 5.78 ± 0.20 and 11.01 ± 0.50 M-1 s-1 for complex 1 and 6.21 ± 0.13 and 20.14 ± 0.72 M-1 s-1 for complex 2, respectively. The kinetic and thermodynamic acidities of the protonated oxido species of complexes 1 and 2 were pKa = 2.55 (2.35) and 2.16 (2.19), respectively, which were far more acidic than those reported by Pecoraro et al. for peroxido-protonation instead of oxido protonation. On the basis of the chemistry observed for these model compounds, a mechanism of halide oxidation and a detailed catalytic cycle are proposed for the vanadium haloperoxidase enzyme and these were substantiated by detailed DFT calculations.

Original languageEnglish
Pages (from-to)2799-2809
Number of pages11
JournalDalton Transactions
Volume47
Issue number8
DOIs
Publication statusPublished - 2018 Jan 1

Fingerprint

Protonation
Bromides
Peroxidase
Amines
Ligands
Oxidation
Vanadium
Kinetics
Acidity
Discrete Fourier transforms
Nuclear magnetic resonance
Spectroscopy
Thermodynamics
Ions
Acids
Geometry
Enzymes
salicylaldehyde
bis(acetylacetonato)oxovanadium(IV)

All Science Journal Classification (ASJC) codes

  • Inorganic Chemistry

Cite this

@article{c623e6f87d054196bf680986650e3f16,
title = "Mono- and dinuclear oxidovanadium(v) complexes of an amine-bis(phenolate) ligand with bromo-peroxidase activities: Synthesis, characterization, catalytic, kinetic and computational studies",
abstract = "The mono- and dinuclear oxidovanadium(v) complexes [VVO(L1)(Cl)] (1) and [L1VVO(μ2-O)VO(L1)] (2) of ONNO donor amine-bis(phenolate) ligand (H2L1) were readily synthesized by the reaction between H2L1 and VCl3.(THF)3 or VO(acac)2 in MeOH or MeCN, respectively, and then characterized through mass spectroscopy, 1H-NMR and FTIR techniques. Both the complexes possess distorted octahedral geometry around each V centre. Upon the addition of 1 equivalent or more acid to a MeCN solution of complex 1, it immediately turned into the protonated form, which might be in equilibrium as: [L1ClVVOH]+ ↔ [L1ClVV-OH]+ (in the case of [L1ClVVOH]+ oxo-O is just protonated, whereas in [L1ClVV-OH]+ it is a hydroxo species), with the shift in λmax from 610 nm to 765 nm. Similar was the case for complex 2. The complexes 1 and 2 could efficiently catalyze the oxidative bromination of salicylaldehyde in the presence of H2O2 to produce 5-bromo salicylaldehyde as the major product with TONs of 405 and 450, respectively, in the mixed solvent system (H2O:MeOH:THF = 4:3:2, v/v). The kinetic analysis of the bromide oxidation reaction indicated a first-order mechanism in the protonated peroxidovanadium complex and a bromide ion and limiting first-order mechanism on [H+]. The evaluated kBr and kH values were 5.78 ± 0.20 and 11.01 ± 0.50 M-1 s-1 for complex 1 and 6.21 ± 0.13 and 20.14 ± 0.72 M-1 s-1 for complex 2, respectively. The kinetic and thermodynamic acidities of the protonated oxido species of complexes 1 and 2 were pKa = 2.55 (2.35) and 2.16 (2.19), respectively, which were far more acidic than those reported by Pecoraro et al. for peroxido-protonation instead of oxido protonation. On the basis of the chemistry observed for these model compounds, a mechanism of halide oxidation and a detailed catalytic cycle are proposed for the vanadium haloperoxidase enzyme and these were substantiated by detailed DFT calculations.",
author = "Mainak Debnath and Malay Dolai and Kaberi Pal and Sourav Bhunya and Ankan Paul and Lee, {Hon Man} and Mahammad Ali",
year = "2018",
month = "1",
day = "1",
doi = "10.1039/c7dt04718e",
language = "English",
volume = "47",
pages = "2799--2809",
journal = "Dalton Transactions",
issn = "1477-9226",
publisher = "Royal Society of Chemistry",
number = "8",

}

Mono- and dinuclear oxidovanadium(v) complexes of an amine-bis(phenolate) ligand with bromo-peroxidase activities : Synthesis, characterization, catalytic, kinetic and computational studies. / Debnath, Mainak; Dolai, Malay; Pal, Kaberi; Bhunya, Sourav; Paul, Ankan; Lee, Hon Man; Ali, Mahammad.

In: Dalton Transactions, Vol. 47, No. 8, 01.01.2018, p. 2799-2809.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Mono- and dinuclear oxidovanadium(v) complexes of an amine-bis(phenolate) ligand with bromo-peroxidase activities

T2 - Synthesis, characterization, catalytic, kinetic and computational studies

AU - Debnath, Mainak

AU - Dolai, Malay

AU - Pal, Kaberi

AU - Bhunya, Sourav

AU - Paul, Ankan

AU - Lee, Hon Man

AU - Ali, Mahammad

PY - 2018/1/1

Y1 - 2018/1/1

N2 - The mono- and dinuclear oxidovanadium(v) complexes [VVO(L1)(Cl)] (1) and [L1VVO(μ2-O)VO(L1)] (2) of ONNO donor amine-bis(phenolate) ligand (H2L1) were readily synthesized by the reaction between H2L1 and VCl3.(THF)3 or VO(acac)2 in MeOH or MeCN, respectively, and then characterized through mass spectroscopy, 1H-NMR and FTIR techniques. Both the complexes possess distorted octahedral geometry around each V centre. Upon the addition of 1 equivalent or more acid to a MeCN solution of complex 1, it immediately turned into the protonated form, which might be in equilibrium as: [L1ClVVOH]+ ↔ [L1ClVV-OH]+ (in the case of [L1ClVVOH]+ oxo-O is just protonated, whereas in [L1ClVV-OH]+ it is a hydroxo species), with the shift in λmax from 610 nm to 765 nm. Similar was the case for complex 2. The complexes 1 and 2 could efficiently catalyze the oxidative bromination of salicylaldehyde in the presence of H2O2 to produce 5-bromo salicylaldehyde as the major product with TONs of 405 and 450, respectively, in the mixed solvent system (H2O:MeOH:THF = 4:3:2, v/v). The kinetic analysis of the bromide oxidation reaction indicated a first-order mechanism in the protonated peroxidovanadium complex and a bromide ion and limiting first-order mechanism on [H+]. The evaluated kBr and kH values were 5.78 ± 0.20 and 11.01 ± 0.50 M-1 s-1 for complex 1 and 6.21 ± 0.13 and 20.14 ± 0.72 M-1 s-1 for complex 2, respectively. The kinetic and thermodynamic acidities of the protonated oxido species of complexes 1 and 2 were pKa = 2.55 (2.35) and 2.16 (2.19), respectively, which were far more acidic than those reported by Pecoraro et al. for peroxido-protonation instead of oxido protonation. On the basis of the chemistry observed for these model compounds, a mechanism of halide oxidation and a detailed catalytic cycle are proposed for the vanadium haloperoxidase enzyme and these were substantiated by detailed DFT calculations.

AB - The mono- and dinuclear oxidovanadium(v) complexes [VVO(L1)(Cl)] (1) and [L1VVO(μ2-O)VO(L1)] (2) of ONNO donor amine-bis(phenolate) ligand (H2L1) were readily synthesized by the reaction between H2L1 and VCl3.(THF)3 or VO(acac)2 in MeOH or MeCN, respectively, and then characterized through mass spectroscopy, 1H-NMR and FTIR techniques. Both the complexes possess distorted octahedral geometry around each V centre. Upon the addition of 1 equivalent or more acid to a MeCN solution of complex 1, it immediately turned into the protonated form, which might be in equilibrium as: [L1ClVVOH]+ ↔ [L1ClVV-OH]+ (in the case of [L1ClVVOH]+ oxo-O is just protonated, whereas in [L1ClVV-OH]+ it is a hydroxo species), with the shift in λmax from 610 nm to 765 nm. Similar was the case for complex 2. The complexes 1 and 2 could efficiently catalyze the oxidative bromination of salicylaldehyde in the presence of H2O2 to produce 5-bromo salicylaldehyde as the major product with TONs of 405 and 450, respectively, in the mixed solvent system (H2O:MeOH:THF = 4:3:2, v/v). The kinetic analysis of the bromide oxidation reaction indicated a first-order mechanism in the protonated peroxidovanadium complex and a bromide ion and limiting first-order mechanism on [H+]. The evaluated kBr and kH values were 5.78 ± 0.20 and 11.01 ± 0.50 M-1 s-1 for complex 1 and 6.21 ± 0.13 and 20.14 ± 0.72 M-1 s-1 for complex 2, respectively. The kinetic and thermodynamic acidities of the protonated oxido species of complexes 1 and 2 were pKa = 2.55 (2.35) and 2.16 (2.19), respectively, which were far more acidic than those reported by Pecoraro et al. for peroxido-protonation instead of oxido protonation. On the basis of the chemistry observed for these model compounds, a mechanism of halide oxidation and a detailed catalytic cycle are proposed for the vanadium haloperoxidase enzyme and these were substantiated by detailed DFT calculations.

UR - http://www.scopus.com/inward/record.url?scp=85042386131&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85042386131&partnerID=8YFLogxK

U2 - 10.1039/c7dt04718e

DO - 10.1039/c7dt04718e

M3 - Article

AN - SCOPUS:85042386131

VL - 47

SP - 2799

EP - 2809

JO - Dalton Transactions

JF - Dalton Transactions

SN - 1477-9226

IS - 8

ER -