TY - JOUR
T1 - Molecular cloning of a putative receptor guanylyl cyclase from Y-organs of the blue crab, Callinectes sapidus
AU - Zheng, Junying
AU - Lee, Chi Ying
AU - Watson, R. Douglas
PY - 2006/5/1
Y1 - 2006/5/1
N2 - Crustacean molt-inhibiting hormone (MIH), a polypeptide produced by neurosecretory cells in eyestalk ganglia, suppresses the synthesis of ecdysteroid molting hormones by paired Y-organs. Data from several sources indicate the effects of MIH are mediated, at least in part, by a cGMP second messenger. Based on these and related findings, our working hypothesis is that the MIH receptor is a receptor guanylyl cyclase (rGC). In studies reported here, we used a PCR-based cloning strategy (RT-PCR followed by 5′- and 3′-RACE) to clone from blue crab (Callinectes sapidus) Y-organs a cDNA (CsGC-YO1) encoding a putative rGC. DNA sequence analysis revealed a 3807 base pair open reading frame encoding a 56 residue signal peptide and a 1213 residue rGC. Analysis of the deduced amino acid sequence showed that CsGC-YO1 contains the signature domains characteristic of rGCs, including an extracellular ligand-binding domain, a single transmembrane domain, a kinase-like domain, a dimerization domain, and a cyclase catalytic domain. CsGC-YO1 is most closely related to an rGC from the crayfish, Procambarus claikii (PcGC-M2, 58.4% identity), and rGCs from three insect species (33.1-37.5% identity). Conserved cysteine residues are similarly distributed in the extracellular domains of CsGC-YO1, PcGC-M2, and the three insect rGCs. RT-PCR revealed the CsGC-YO1 transcript is expressed in Y-organs and several other tissues. While other interpretations of the data are possible, our working hypothesis is that the cloned cDNA encodes an MIH receptor.
AB - Crustacean molt-inhibiting hormone (MIH), a polypeptide produced by neurosecretory cells in eyestalk ganglia, suppresses the synthesis of ecdysteroid molting hormones by paired Y-organs. Data from several sources indicate the effects of MIH are mediated, at least in part, by a cGMP second messenger. Based on these and related findings, our working hypothesis is that the MIH receptor is a receptor guanylyl cyclase (rGC). In studies reported here, we used a PCR-based cloning strategy (RT-PCR followed by 5′- and 3′-RACE) to clone from blue crab (Callinectes sapidus) Y-organs a cDNA (CsGC-YO1) encoding a putative rGC. DNA sequence analysis revealed a 3807 base pair open reading frame encoding a 56 residue signal peptide and a 1213 residue rGC. Analysis of the deduced amino acid sequence showed that CsGC-YO1 contains the signature domains characteristic of rGCs, including an extracellular ligand-binding domain, a single transmembrane domain, a kinase-like domain, a dimerization domain, and a cyclase catalytic domain. CsGC-YO1 is most closely related to an rGC from the crayfish, Procambarus claikii (PcGC-M2, 58.4% identity), and rGCs from three insect species (33.1-37.5% identity). Conserved cysteine residues are similarly distributed in the extracellular domains of CsGC-YO1, PcGC-M2, and the three insect rGCs. RT-PCR revealed the CsGC-YO1 transcript is expressed in Y-organs and several other tissues. While other interpretations of the data are possible, our working hypothesis is that the cloned cDNA encodes an MIH receptor.
UR - http://www.scopus.com/inward/record.url?scp=33646019539&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33646019539&partnerID=8YFLogxK
U2 - 10.1016/j.ygcen.2005.12.001
DO - 10.1016/j.ygcen.2005.12.001
M3 - Article
C2 - 16426608
AN - SCOPUS:33646019539
VL - 146
SP - 329
EP - 336
JO - General and Comparative Endocrinology
JF - General and Comparative Endocrinology
SN - 0016-6480
IS - 3
ER -