TY - JOUR
T1 - Modeling the spatial occurrence of shallow landslides triggered by typhoons
AU - Chang, Kang tsung
AU - Chiang, Shou hao
AU - Chen, Yi chin
AU - Mondini, Alessandro C.
PY - 2014/3/1
Y1 - 2014/3/1
N2 - Many shallow landslides in Taiwan are triggered by typhoons (tropical cyclones) during the summer months. Each typhoon produces a different rainfall distribution, depending on its track and position and the atmospheric conditions. This study investigated whether the additional rainfall data in a landslide susceptibility model can improve its performance in predicting typhoon-triggered landslides, and whether information on past typhoon events, combined with an event-based landslide inventory, can help predict landslides triggered by a typhoon. To answer these questions, the study adopted a method that integrates rainfall data with the critical rainfall model (a landslide susceptibility model based on geoenvironmental factors) to derive a logistic regression model for predicting landslide occurrence. Results of a back analysis of landslides triggered by nine typhoons from 2001 to 2009 reveal that, by including rainfall data, the integrated method performs better than the critical rainfall model in the average overall accuracy rate (0.78 vs. 0.45) and the average modified success rate (0.75 vs. 0.68). Our preliminary results also suggest that it is possible to predict landslides triggered by a typhoon by using a catch-all model developed from all other typhoon events in an inventory, or a group model developed from other typhoon events of similar rainfall characteristics in an inventory. This study opens up a new research direction in analyzing rainfall-triggered landslides in Taiwan and elsewhere.
AB - Many shallow landslides in Taiwan are triggered by typhoons (tropical cyclones) during the summer months. Each typhoon produces a different rainfall distribution, depending on its track and position and the atmospheric conditions. This study investigated whether the additional rainfall data in a landslide susceptibility model can improve its performance in predicting typhoon-triggered landslides, and whether information on past typhoon events, combined with an event-based landslide inventory, can help predict landslides triggered by a typhoon. To answer these questions, the study adopted a method that integrates rainfall data with the critical rainfall model (a landslide susceptibility model based on geoenvironmental factors) to derive a logistic regression model for predicting landslide occurrence. Results of a back analysis of landslides triggered by nine typhoons from 2001 to 2009 reveal that, by including rainfall data, the integrated method performs better than the critical rainfall model in the average overall accuracy rate (0.78 vs. 0.45) and the average modified success rate (0.75 vs. 0.68). Our preliminary results also suggest that it is possible to predict landslides triggered by a typhoon by using a catch-all model developed from all other typhoon events in an inventory, or a group model developed from other typhoon events of similar rainfall characteristics in an inventory. This study opens up a new research direction in analyzing rainfall-triggered landslides in Taiwan and elsewhere.
UR - http://www.scopus.com/inward/record.url?scp=84893799433&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893799433&partnerID=8YFLogxK
U2 - 10.1016/j.geomorph.2013.11.020
DO - 10.1016/j.geomorph.2013.11.020
M3 - Article
AN - SCOPUS:84893799433
VL - 208
SP - 137
EP - 148
JO - Geomorphology
JF - Geomorphology
SN - 0169-555X
ER -