### Abstract

Let H be a complex Hilbert space and let T (N) be a nest algebra on H. We characterize linear maps f; g; h : T (N) → T (N) satisfying f([x; y]) = [g(x); y] + [x; h(y)] for all x; y ∈ T (N).

Original language | English |
---|---|

Pages (from-to) | 767-777 |

Number of pages | 11 |

Journal | Houston Journal of Mathematics |

Volume | 40 |

Issue number | 3 |

Publication status | Published - 2014 Jan 1 |

### Fingerprint

### All Science Journal Classification (ASJC) codes

- Mathematics(all)

### Cite this

*Houston Journal of Mathematics*,

*40*(3), 767-777.

}

*Houston Journal of Mathematics*, vol. 40, no. 3, pp. 767-777.

**Maps characterized by lie products on nest algebras.** / Liu, Cheng-Kai.

Research output: Contribution to journal › Article

TY - JOUR

T1 - Maps characterized by lie products on nest algebras

AU - Liu, Cheng-Kai

PY - 2014/1/1

Y1 - 2014/1/1

N2 - Let H be a complex Hilbert space and let T (N) be a nest algebra on H. We characterize linear maps f; g; h : T (N) → T (N) satisfying f([x; y]) = [g(x); y] + [x; h(y)] for all x; y ∈ T (N).

AB - Let H be a complex Hilbert space and let T (N) be a nest algebra on H. We characterize linear maps f; g; h : T (N) → T (N) satisfying f([x; y]) = [g(x); y] + [x; h(y)] for all x; y ∈ T (N).

UR - http://www.scopus.com/inward/record.url?scp=84908276919&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84908276919&partnerID=8YFLogxK

M3 - Article

VL - 40

SP - 767

EP - 777

JO - Houston Journal of Mathematics

JF - Houston Journal of Mathematics

SN - 0362-1588

IS - 3

ER -