### Abstract

Let H be a complex Hilbert space and let T (N) be a nest algebra on H. We characterize linear maps f; g; h : T (N) → T (N) satisfying f([x; y]) = [g(x); y] + [x; h(y)] for all x; y ∈ T (N).

Original language | English |
---|---|

Pages (from-to) | 767-777 |

Number of pages | 11 |

Journal | Houston Journal of Mathematics |

Volume | 40 |

Issue number | 3 |

Publication status | Published - 2014 Jan 1 |

### All Science Journal Classification (ASJC) codes

- Mathematics(all)

## Fingerprint Dive into the research topics of 'Maps characterized by lie products on nest algebras'. Together they form a unique fingerprint.

## Cite this

Liu, C. K. (2014). Maps characterized by lie products on nest algebras.

*Houston Journal of Mathematics*,*40*(3), 767-777.