Long term stable Δ-Σ NDIR technique based on temperature compensation

Chih Hsiung Shen, Jun Hong Yeah

Research output: Contribution to journalArticle

Abstract

For a fast and long termstableNon Dispersive Infrared (NDIR) technology of gas concentration measurement, the temperature compensation is required. A novel proposed Δ-Σ NDIR system was investigated and built with a closed-loop feedback system to stabilize the signal readings without temperature drift. The modulation of the infrared heater gives a corresponding signal of gas concentration based on our proposed Δ-Σ conversion algorithm that was affected by the drift of temperatures for the infrared sensor. For our study, a new temperature compensation model was built and verified that formulates the relationship between gas concentration and temperature of sensor. The results show that our proposed Δ-Σ can measure efficiently with half of the startup time than our previous design and maintain long term stability.

Original languageEnglish
Article number309
JournalApplied Sciences (Switzerland)
Volume9
Issue number2
DOIs
Publication statusPublished - 2019 Jan 16

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Instrumentation
  • Engineering(all)
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Cite this