### Abstract

Let A be a ring with a simple right module M and D=End(MA). Let {θ_{1}, θ_{2}, θ_{n}} be a reduced set of skew derivations, where each i is a i-derivation of A satisfying ij=ji and ij=ji for all i, j. Let 1, m be distinct words of the form [image omitted], where each isp in the case of char(D)=p0. Let 1, be mutually M-independent automorphisms of A. Then for any D-independent elements x1, x2, xkM and any elements zijtM, there exists aA such that zijt=xiajt for all i=1, 2, k, j=1, 2, m, t=1, .

Original language | English |
---|---|

Pages (from-to) | 1391-1413 |

Number of pages | 23 |

Journal | Communications in Algebra |

Volume | 35 |

Issue number | 4 |

DOIs | |

Publication status | Published - 2007 Apr 1 |

### Fingerprint

### All Science Journal Classification (ASJC) codes

- Algebra and Number Theory

### Cite this

*Communications in Algebra*,

*35*(4), 1391-1413. https://doi.org/10.1080/00927870601142207

}

*Communications in Algebra*, vol. 35, no. 4, pp. 1391-1413. https://doi.org/10.1080/00927870601142207

**Extended Jacobson density theorem for rings with skew derivations.** / Chuang, Chen Lian; Liu, Cheng Kai.

Research output: Contribution to journal › Article

TY - JOUR

T1 - Extended Jacobson density theorem for rings with skew derivations

AU - Chuang, Chen Lian

AU - Liu, Cheng Kai

PY - 2007/4/1

Y1 - 2007/4/1

N2 - Let A be a ring with a simple right module M and D=End(MA). Let {θ1, θ2, θn} be a reduced set of skew derivations, where each i is a i-derivation of A satisfying ij=ji and ij=ji for all i, j. Let 1, m be distinct words of the form [image omitted], where each isp in the case of char(D)=p0. Let 1, be mutually M-independent automorphisms of A. Then for any D-independent elements x1, x2, xkM and any elements zijtM, there exists aA such that zijt=xiajt for all i=1, 2, k, j=1, 2, m, t=1, .

AB - Let A be a ring with a simple right module M and D=End(MA). Let {θ1, θ2, θn} be a reduced set of skew derivations, where each i is a i-derivation of A satisfying ij=ji and ij=ji for all i, j. Let 1, m be distinct words of the form [image omitted], where each isp in the case of char(D)=p0. Let 1, be mutually M-independent automorphisms of A. Then for any D-independent elements x1, x2, xkM and any elements zijtM, there exists aA such that zijt=xiajt for all i=1, 2, k, j=1, 2, m, t=1, .

UR - http://www.scopus.com/inward/record.url?scp=34247351189&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34247351189&partnerID=8YFLogxK

U2 - 10.1080/00927870601142207

DO - 10.1080/00927870601142207

M3 - Article

AN - SCOPUS:34247351189

VL - 35

SP - 1391

EP - 1413

JO - Communications in Algebra

JF - Communications in Algebra

SN - 0092-7872

IS - 4

ER -