Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system

Yanheng Ding, Cheng Lee

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

This paper deals with existence and exponential decay of homoclinic orbits in the first-order Hamiltonian systemover(z, ̇) = J Hz (t, z) where the Hamiltonian function H (t, z) is nonperiodic in t ∈ R and superquadratic in z ∈ R2 N. With certain mild conditions we obtain the solutions via variational methods for strongly indefinite problems.

Original languageEnglish
Pages (from-to)2829-2848
Number of pages20
JournalJournal of Differential Equations
Volume246
Issue number7
DOIs
Publication statusPublished - 2009 Apr 1

Fingerprint

Hamiltonians
Homoclinic
Exponential Decay
Hamiltonian Systems
H-function
Homoclinic Orbit
Variational Methods
Orbits
First-order

All Science Journal Classification (ASJC) codes

  • Analysis
  • Applied Mathematics

Cite this

@article{3204b36aa5b54b6da25c1ea00cdf0925,
title = "Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system",
abstract = "This paper deals with existence and exponential decay of homoclinic orbits in the first-order Hamiltonian systemover(z, ̇) = J Hz (t, z) where the Hamiltonian function H (t, z) is nonperiodic in t ∈ R and superquadratic in z ∈ R2 N. With certain mild conditions we obtain the solutions via variational methods for strongly indefinite problems.",
author = "Yanheng Ding and Cheng Lee",
year = "2009",
month = "4",
day = "1",
doi = "10.1016/j.jde.2008.12.013",
language = "English",
volume = "246",
pages = "2829--2848",
journal = "Journal of Differential Equations",
issn = "0022-0396",
publisher = "Academic Press Inc.",
number = "7",

}

Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system. / Ding, Yanheng; Lee, Cheng.

In: Journal of Differential Equations, Vol. 246, No. 7, 01.04.2009, p. 2829-2848.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system

AU - Ding, Yanheng

AU - Lee, Cheng

PY - 2009/4/1

Y1 - 2009/4/1

N2 - This paper deals with existence and exponential decay of homoclinic orbits in the first-order Hamiltonian systemover(z, ̇) = J Hz (t, z) where the Hamiltonian function H (t, z) is nonperiodic in t ∈ R and superquadratic in z ∈ R2 N. With certain mild conditions we obtain the solutions via variational methods for strongly indefinite problems.

AB - This paper deals with existence and exponential decay of homoclinic orbits in the first-order Hamiltonian systemover(z, ̇) = J Hz (t, z) where the Hamiltonian function H (t, z) is nonperiodic in t ∈ R and superquadratic in z ∈ R2 N. With certain mild conditions we obtain the solutions via variational methods for strongly indefinite problems.

UR - http://www.scopus.com/inward/record.url?scp=60349111590&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=60349111590&partnerID=8YFLogxK

U2 - 10.1016/j.jde.2008.12.013

DO - 10.1016/j.jde.2008.12.013

M3 - Article

AN - SCOPUS:60349111590

VL - 246

SP - 2829

EP - 2848

JO - Journal of Differential Equations

JF - Journal of Differential Equations

SN - 0022-0396

IS - 7

ER -