Effects of interfacial charge and the particle size of titanate nanotube-supported Pt nanoparticles on the hydrogenation of cinnamaldehyde

Tsai Chin Chiu, Hsin Yi Lee, Pei Hua Li, Jiunn Hsing Chao, Chiu-Hsun Lin

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The oxidation state and size of Pt nanoparticles attached to alkali metal titanate nanotubes (MTNTs=M2Ti3O7, M = Li +, Na+, K+, Cs+) via ion exchange (indicated by the added label '-IE') and wet impregnation (indicated by the added label '-IMP') methods varied systematically with the cation of the MTNTs. X-ray photoelectron spectroscopy revealed that the binding energy of Pt was reduced to a low value when the support was changed from LiTNTs to CsTNTs, yielding a Ptδ- oxidation state. Thus, a space charge layer (SCL) was constructed at the interface between the Pt particle and MTNT support; the former carried the negative charge, and the alkali cation and proton in the hydroxyl group of the latter carried the positive charge. Due to a higher M/Ti atomic ratio in MTNTs, a higher electron density accumulated on Pt particles in Pt/MTNTs-IMP than on those in Pt/MTNTs-IE. Sub-ambient temperature temperature-programmed reduction and transmission electron microscopy revealed that because of the difference in reducibility of PtOx/MTNTs, the mean Pt particle size followed the order Pt/CsTNTs > Pt/KTNTs > Pt/NaTNTs > Pt/LiTNTs and Pt/MTNTs-IMP > Pt/MTNTs-IE. DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) showed that owing to its interaction with SCL, cinnamaldehyde adsorbed on Pt mainly through the C=C bond at the Pt-MTNT interfaces, and the small Pt particles in Pt/LiTNTs adsorbed three times more cinnamaldehyde than those in Pt/CsTNTs. Due to the competition between the adsorption of cinnamaldehyde and C=C activation, Pt/KTNT-IMP is the most active Pt/MTNT catalysts, achieving a conversion of 100% in the hydrogenation of cinnamaldehyde at 2 atm and 313 K. The carbonyl stretching of adsorbed cinnamaldehyde was almost unperturbed by adsorption (at 1705 cm-1), suggesting that Ptδ- and the π electrons in the carbonyl group repel each other, so the CH=O group points upward and away from the Pt surface, preventing it from being hydrogenated and causing Pt/MTNTs to exhibit high 3-phenyl propionaldehyde selectivities of 75-80%.

Original languageEnglish
Article number115601
JournalNanotechnology
Volume24
Issue number11
DOIs
Publication statusPublished - 2013 Mar 22

Fingerprint

Inosine Monophosphate
Electric space charge
Nanotubes
Hydrogenation
Labels
Positive ions
Particle size
Nanoparticles
Point groups
Adsorption
Oxidation
Beam plasma interactions
Alkali metals
Binding energy
Impregnation
Stretching
Fourier transform infrared spectroscopy
Carrier concentration
Ion exchange
Protons

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Cite this

@article{c522ccdb9da84adfa0ac635c4631c488,
title = "Effects of interfacial charge and the particle size of titanate nanotube-supported Pt nanoparticles on the hydrogenation of cinnamaldehyde",
abstract = "The oxidation state and size of Pt nanoparticles attached to alkali metal titanate nanotubes (MTNTs=M2Ti3O7, M = Li +, Na+, K+, Cs+) via ion exchange (indicated by the added label '-IE') and wet impregnation (indicated by the added label '-IMP') methods varied systematically with the cation of the MTNTs. X-ray photoelectron spectroscopy revealed that the binding energy of Pt was reduced to a low value when the support was changed from LiTNTs to CsTNTs, yielding a Ptδ- oxidation state. Thus, a space charge layer (SCL) was constructed at the interface between the Pt particle and MTNT support; the former carried the negative charge, and the alkali cation and proton in the hydroxyl group of the latter carried the positive charge. Due to a higher M/Ti atomic ratio in MTNTs, a higher electron density accumulated on Pt particles in Pt/MTNTs-IMP than on those in Pt/MTNTs-IE. Sub-ambient temperature temperature-programmed reduction and transmission electron microscopy revealed that because of the difference in reducibility of PtOx/MTNTs, the mean Pt particle size followed the order Pt/CsTNTs > Pt/KTNTs > Pt/NaTNTs > Pt/LiTNTs and Pt/MTNTs-IMP > Pt/MTNTs-IE. DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) showed that owing to its interaction with SCL, cinnamaldehyde adsorbed on Pt mainly through the C=C bond at the Pt-MTNT interfaces, and the small Pt particles in Pt/LiTNTs adsorbed three times more cinnamaldehyde than those in Pt/CsTNTs. Due to the competition between the adsorption of cinnamaldehyde and C=C activation, Pt/KTNT-IMP is the most active Pt/MTNT catalysts, achieving a conversion of 100{\%} in the hydrogenation of cinnamaldehyde at 2 atm and 313 K. The carbonyl stretching of adsorbed cinnamaldehyde was almost unperturbed by adsorption (at 1705 cm-1), suggesting that Ptδ- and the π electrons in the carbonyl group repel each other, so the CH=O group points upward and away from the Pt surface, preventing it from being hydrogenated and causing Pt/MTNTs to exhibit high 3-phenyl propionaldehyde selectivities of 75-80{\%}.",
author = "Chiu, {Tsai Chin} and Lee, {Hsin Yi} and Li, {Pei Hua} and Chao, {Jiunn Hsing} and Chiu-Hsun Lin",
year = "2013",
month = "3",
day = "22",
doi = "10.1088/0957-4484/24/11/115601",
language = "English",
volume = "24",
journal = "Nanotechnology",
issn = "0957-4484",
publisher = "IOP Publishing Ltd.",
number = "11",

}

Effects of interfacial charge and the particle size of titanate nanotube-supported Pt nanoparticles on the hydrogenation of cinnamaldehyde. / Chiu, Tsai Chin; Lee, Hsin Yi; Li, Pei Hua; Chao, Jiunn Hsing; Lin, Chiu-Hsun.

In: Nanotechnology, Vol. 24, No. 11, 115601, 22.03.2013.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Effects of interfacial charge and the particle size of titanate nanotube-supported Pt nanoparticles on the hydrogenation of cinnamaldehyde

AU - Chiu, Tsai Chin

AU - Lee, Hsin Yi

AU - Li, Pei Hua

AU - Chao, Jiunn Hsing

AU - Lin, Chiu-Hsun

PY - 2013/3/22

Y1 - 2013/3/22

N2 - The oxidation state and size of Pt nanoparticles attached to alkali metal titanate nanotubes (MTNTs=M2Ti3O7, M = Li +, Na+, K+, Cs+) via ion exchange (indicated by the added label '-IE') and wet impregnation (indicated by the added label '-IMP') methods varied systematically with the cation of the MTNTs. X-ray photoelectron spectroscopy revealed that the binding energy of Pt was reduced to a low value when the support was changed from LiTNTs to CsTNTs, yielding a Ptδ- oxidation state. Thus, a space charge layer (SCL) was constructed at the interface between the Pt particle and MTNT support; the former carried the negative charge, and the alkali cation and proton in the hydroxyl group of the latter carried the positive charge. Due to a higher M/Ti atomic ratio in MTNTs, a higher electron density accumulated on Pt particles in Pt/MTNTs-IMP than on those in Pt/MTNTs-IE. Sub-ambient temperature temperature-programmed reduction and transmission electron microscopy revealed that because of the difference in reducibility of PtOx/MTNTs, the mean Pt particle size followed the order Pt/CsTNTs > Pt/KTNTs > Pt/NaTNTs > Pt/LiTNTs and Pt/MTNTs-IMP > Pt/MTNTs-IE. DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) showed that owing to its interaction with SCL, cinnamaldehyde adsorbed on Pt mainly through the C=C bond at the Pt-MTNT interfaces, and the small Pt particles in Pt/LiTNTs adsorbed three times more cinnamaldehyde than those in Pt/CsTNTs. Due to the competition between the adsorption of cinnamaldehyde and C=C activation, Pt/KTNT-IMP is the most active Pt/MTNT catalysts, achieving a conversion of 100% in the hydrogenation of cinnamaldehyde at 2 atm and 313 K. The carbonyl stretching of adsorbed cinnamaldehyde was almost unperturbed by adsorption (at 1705 cm-1), suggesting that Ptδ- and the π electrons in the carbonyl group repel each other, so the CH=O group points upward and away from the Pt surface, preventing it from being hydrogenated and causing Pt/MTNTs to exhibit high 3-phenyl propionaldehyde selectivities of 75-80%.

AB - The oxidation state and size of Pt nanoparticles attached to alkali metal titanate nanotubes (MTNTs=M2Ti3O7, M = Li +, Na+, K+, Cs+) via ion exchange (indicated by the added label '-IE') and wet impregnation (indicated by the added label '-IMP') methods varied systematically with the cation of the MTNTs. X-ray photoelectron spectroscopy revealed that the binding energy of Pt was reduced to a low value when the support was changed from LiTNTs to CsTNTs, yielding a Ptδ- oxidation state. Thus, a space charge layer (SCL) was constructed at the interface between the Pt particle and MTNT support; the former carried the negative charge, and the alkali cation and proton in the hydroxyl group of the latter carried the positive charge. Due to a higher M/Ti atomic ratio in MTNTs, a higher electron density accumulated on Pt particles in Pt/MTNTs-IMP than on those in Pt/MTNTs-IE. Sub-ambient temperature temperature-programmed reduction and transmission electron microscopy revealed that because of the difference in reducibility of PtOx/MTNTs, the mean Pt particle size followed the order Pt/CsTNTs > Pt/KTNTs > Pt/NaTNTs > Pt/LiTNTs and Pt/MTNTs-IMP > Pt/MTNTs-IE. DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) showed that owing to its interaction with SCL, cinnamaldehyde adsorbed on Pt mainly through the C=C bond at the Pt-MTNT interfaces, and the small Pt particles in Pt/LiTNTs adsorbed three times more cinnamaldehyde than those in Pt/CsTNTs. Due to the competition between the adsorption of cinnamaldehyde and C=C activation, Pt/KTNT-IMP is the most active Pt/MTNT catalysts, achieving a conversion of 100% in the hydrogenation of cinnamaldehyde at 2 atm and 313 K. The carbonyl stretching of adsorbed cinnamaldehyde was almost unperturbed by adsorption (at 1705 cm-1), suggesting that Ptδ- and the π electrons in the carbonyl group repel each other, so the CH=O group points upward and away from the Pt surface, preventing it from being hydrogenated and causing Pt/MTNTs to exhibit high 3-phenyl propionaldehyde selectivities of 75-80%.

UR - http://www.scopus.com/inward/record.url?scp=84874858957&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84874858957&partnerID=8YFLogxK

U2 - 10.1088/0957-4484/24/11/115601

DO - 10.1088/0957-4484/24/11/115601

M3 - Article

C2 - 23448895

AN - SCOPUS:84874858957

VL - 24

JO - Nanotechnology

JF - Nanotechnology

SN - 0957-4484

IS - 11

M1 - 115601

ER -