Abstract
The effects of H2O2 treatment on the temperature-dependent behavior of carrier transport and the optoelectronic properties of a MoS2/Si nanowire (SiNW)/n-Si device are studied. The MoS2 thin films are prepared using the sol–gel method. The thermionic emission–diffusion model is the dominant process in the MoS2/SiNW/n-Si device when there is no H2O2 treatment. However, carrier transport in MoS2/SiNW/n-Si devices that are subject to H2O2 treatment is dominated by thermionic emission, so it demonstrates reliable rectification. Passivation of the SiNW surface increases the responsivity to solar irradiation. There is a low trap density at the MoS2/SiNW interfaces so the increase in photocurrent density for the MoS2/SiNW/n-Si device that is subject to H2O2 treatment is due to greater internal power conversion efficiency. The photo-response results for MoS2/SiNW/n-Si devices that are subject to (are not subject to) H2O2 treatment confirm that the decay in the photocurrent is due to the dominance of long-lifetime (short-lifetime) charge trapping. MoS2/SiNW/n-Si devices that are subject to H2O2 treatment exhibit reliable responsivity to solar irradiation.
Original language | English |
---|---|
Pages (from-to) | 6032-6039 |
Number of pages | 8 |
Journal | Journal of Materials Science: Materials in Electronics |
Volume | 29 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2018 Apr 1 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
- Electrical and Electronic Engineering