Effects of electron charge density and particle size of alkali metal titanate nanotube-supported Pt photocatalysts on production of H2 from neat alcohol

Chiu Hsun Lin, Jiunn Hsing Chao, Wei Je Tsai, Meng Jou He, Ting Ju Chiang

Research output: Contribution to journalArticle

6 Citations (Scopus)


Pt nanoparticles (PtNPs) in the range of 1.0-3.0 nm were deposited on alkali titanate nanotubes (MTNTs = M2-xHxTi3O7, M = Li+, Na+, K+ and Cs+) by wet impregnation. While most of the physical properties of Pt/MTNTs remained almost constant, the oxidation state and size of PtNPs varied systematically with the size of the cations of MTNTs. XPS indicated that the binding energy of Pt in Pt/MTNTs was reduced to a lower value than that of Pt0, yielding a Ptδ- oxidation state. Diffuse-reflectance infrared Fourier transform spectroscopy coupling with CO adsorption studies confirmed the formation of the Ptδ- state in Pt/MTNTs. Thus, electrons were transferred from MTNTs to PtNPs establishing an electric double layer at the interface between PtNP and MTNT supports, and the degree of electron transfer increased with the size of the cations in MTNTs. HRTEM revealed that the mean sizes of PtNPs followed the order, Pt/LiTNTs < Pt/NaTNTs < Pt/KTNTs < Pt/CsTNTs. TPR showed that the reducibility of PtOx/MTNTs determined the order of PtNPs size. In the photocatalytic production of H2 (2H+ + 2e-→ H2), since H2 is produced at the interfacial Pt sites, the electron charge density and the particle size of PtNPs are the two competing factors in producing H2. Photoluminescence studies revealed that the initial increase in electron density on PtNPs reduced the recombination of h+-e- pairs and increased H2 yields, but a further increase in charge density enhanced the recombination of h+-e- pairs and lowered the H2 yield. PtNPs in Pt/KTNTs had a moderate charge density and a moderate particle size, and so, produced a maximum amount of H2 among Pt/MTNTs.

Original languageEnglish
Pages (from-to)23743-23753
Number of pages11
JournalPhysical Chemistry Chemical Physics
Issue number43
Publication statusPublished - 2014 Oct 15


All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this