Dislocation reduction in GaN grown on stripe patterned r -plane sapphire substrates

Hou Guang Chen, Tsung Shine Ko, Shih Chun Ling, Tien Chang Lu, Hao Chung Kuo, Shing Chung Wang, Yue Han Wu, Li Chang

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

Extended defect reduction in GaN can be achieved via direct growth on stripe patterned (1 1- 02) r -plane sapphire substrates by metal organic chemical vapor deposition. The striped mesa is along [11 2- 0] with two etched sides in {0001} and {1 1- 01} faces. GaN grown on both etched facets in epitaxy exhibit different crystallographic relationships with sapphire substrate which are (1 1- 02)sapphire ∥ (11 2- 0)GaN and [11 2- 0]sapphire ∥ [1- 100]GaN, and (0001)sapphire ∥ (0001)GaN and [11 2- 0]sapphire ∥ [1- 100]GaN, respectively. The dislocation densities can be significantly reduced through epitaxial growth on the inclined lateral faces of mesas. Dislocation density in the order of ∼ 107 cm-2 can be achieved in the tilted GaN.

Original languageEnglish
Article number021914
JournalApplied Physics Letters
Volume91
Issue number2
DOIs
Publication statusPublished - 2007 Aug 1

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy (miscellaneous)

Fingerprint Dive into the research topics of 'Dislocation reduction in GaN grown on stripe patterned r -plane sapphire substrates'. Together they form a unique fingerprint.

  • Cite this

    Chen, H. G., Ko, T. S., Ling, S. C., Lu, T. C., Kuo, H. C., Wang, S. C., Wu, Y. H., & Chang, L. (2007). Dislocation reduction in GaN grown on stripe patterned r -plane sapphire substrates. Applied Physics Letters, 91(2), [021914]. https://doi.org/10.1063/1.2754643