Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode

Chi Yung Lai, Chih Hung Wu, Chui Ting Meng, Chi Wen Lin

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)


Wood-degrading white-rot fungi produce many extracellular enzymes, including the multi-copper oxidative enzyme laccase (EC Laccase uses atmospheric oxygen as the electron acceptor to catalyze a one-electron oxidation reaction of phenolic compounds and therefore has the potential to simultaneously act as a cathode catalyst in a microbial fuel cell (MFC) and degrade azo dye pollutants. In this study, the laccase-producing white-rot fungus Ganoderma lucidum BCRC 36123 was planted on the cathode surface of a single-chamber MFC to degrade the azo dye acid orange 7 (AO7) synergistically with an anaerobic microbial community in the anode chamber. In a batch culture, the fungus used AO7 as the sole carbon source and produced laccase continuously, reaching a maximum activity of 20.3 ± 0.3 U/L on day 19 with a 77% decolorization of the dye (50 mg/L). During MFC operations, AO7 in the anolyte diffused across a layer of polyvinyl alcohol-hydrogel that separated the cathode membrane from the anode chamber, and served as a carbon source to support the growth of, and production of laccase by, the fungal mycelium that was planted on the cathode. In such MFCs, laccase-producing fungal cathodes outperformed laccase-free controls, yielding a maximum open-circuit voltage of 821 mV, a closed-circuit voltage of 394 mV with an external resistance of 1000 Ω, a maximum power density of 13.38 mW/m2, a maximum current density of 33 mA/m2, and a >90% decolorization of AO7. This study demonstrates the feasibility of growing a white-rot fungal culture with continuous laccase production on the cathode of MFCs to improve their electricity generation and azo dye removal efficiency.

Original languageEnglish
Pages (from-to)392-398
Number of pages7
JournalApplied Energy
Publication statusPublished - 2017 Feb 15

All Science Journal Classification (ASJC) codes

  • Building and Construction
  • Energy(all)
  • Mechanical Engineering
  • Management, Monitoring, Policy and Law

Fingerprint Dive into the research topics of 'Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode'. Together they form a unique fingerprint.

Cite this