Abstract
This study reports the successful preparation of Cu(In,Ga)Se 2 (CIGS) thin film solar cells by magnetron sputtering with a chalcopyrite CIGS quaternary alloy target. Bi-layer Mo films were deposited onto soda lime glass. A CIGS quaternary alloy target was used in combination with a stack indium target for compensating the loss of indium during annealing process. A one-stage annealing process was performed to form CIGS chalcopyrite phase. Experimental results show that the optimal adhesion strength, residual stress, and resistivity were obtained at a thickness ratio of 67% of bi-layer Mo films and a working pressure of 0.13 Pa. The CIGS precursor was layered through selenization at 798 K for 20 min. The stoichiometry ratios of the CIGS film were Cu/(In + Ga) = 0.91 and Ga/(In + Ga) = 0.23, which approached the device-quality stoichiometry ratio (Cu/(In + Ga) <0.95, and Ga/(In + Ga) <0.3). The resistivity of the sample was 11.8 Ωcm, with a carrier concentration of 3.6 × 10 17 cm -3 and mobility of 1.45 cm 2V -1s -1. The resulting film exhibited p-type conductivity.
Original language | English |
---|---|
Pages (from-to) | 493-500 |
Number of pages | 8 |
Journal | Journal of Materials Science: Materials in Electronics |
Volume | 23 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2012 Feb 1 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
- Electrical and Electronic Engineering