TY - JOUR
T1 - Characterization of in vitro modified human high-density lipoprotein particles and phospholipids by capillary zone electrophoresis and LC ESI-MS
AU - Wu, Chung Yu
AU - Peng, Yu Nong
AU - Chiu, Jing Huei
AU - Ho, Yu Ling
AU - Chong, Chin Pong
AU - Yang, Ying Ling
AU - Liu, Mine Yine
PY - 2009/11/1
Y1 - 2009/11/1
N2 - A simple capillary zone electrophoresis (CZE) method was used to characterize native, in vitro oxidized and glycated human high-density lipoprotein (HDL) particles. Both native and in vitro oxidized HDL capillary electrophoresis (CE) profiles showed a major peak, but the oxidized HDL particles had higher effective mobilities. The in vitro glycated HDL particles showed a major peak and one or two minor peaks. The effective mobility of the major peak of glycated HDL was similar to that of the major peak of native HDL, whereas the effective mobilities of the two minor peaks were much lower. For the analysis of HDL phospholipids, a solid phase extraction procedure was optimized and a LC ESI-MS method was developed. Several possible HDL phospholipid molecular species including phosphatidylcholine (PC 16:0/18:2, 16:0/18:1, 18:0/18:2 and 18:0/18:1), sphingomyelin (SM 16:0) and lyso-phosphatidylcholine (lysoPC 16:0 and 18:0) were found. It appeared that the ion intensity ratios of hydroperoxy-PC or epoxyhydroxy-PC (16:0/hydroperoxy-18:2 or 16:0/epoxyhydroxy-18:2, m/z 790.4) and trihydroxy-PC (16:0/trihydroxy-18:2, m/z 808.3) relative to PC (C16:0/C18:2, m/z 758.5) were higher for oxidized HDL than for native and glycated HDL. It should be helpful to use both CZE and LC ESI-MS methods for analyzing high-density lipoproteins from patients of cardiovascular disease. Their combination may be also useful for further studies concerning the role of oxidized and glycated HDLs in the development of atherosclerosis.
AB - A simple capillary zone electrophoresis (CZE) method was used to characterize native, in vitro oxidized and glycated human high-density lipoprotein (HDL) particles. Both native and in vitro oxidized HDL capillary electrophoresis (CE) profiles showed a major peak, but the oxidized HDL particles had higher effective mobilities. The in vitro glycated HDL particles showed a major peak and one or two minor peaks. The effective mobility of the major peak of glycated HDL was similar to that of the major peak of native HDL, whereas the effective mobilities of the two minor peaks were much lower. For the analysis of HDL phospholipids, a solid phase extraction procedure was optimized and a LC ESI-MS method was developed. Several possible HDL phospholipid molecular species including phosphatidylcholine (PC 16:0/18:2, 16:0/18:1, 18:0/18:2 and 18:0/18:1), sphingomyelin (SM 16:0) and lyso-phosphatidylcholine (lysoPC 16:0 and 18:0) were found. It appeared that the ion intensity ratios of hydroperoxy-PC or epoxyhydroxy-PC (16:0/hydroperoxy-18:2 or 16:0/epoxyhydroxy-18:2, m/z 790.4) and trihydroxy-PC (16:0/trihydroxy-18:2, m/z 808.3) relative to PC (C16:0/C18:2, m/z 758.5) were higher for oxidized HDL than for native and glycated HDL. It should be helpful to use both CZE and LC ESI-MS methods for analyzing high-density lipoproteins from patients of cardiovascular disease. Their combination may be also useful for further studies concerning the role of oxidized and glycated HDLs in the development of atherosclerosis.
UR - http://www.scopus.com/inward/record.url?scp=72049124259&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=72049124259&partnerID=8YFLogxK
U2 - 10.1016/j.jchromb.2009.08.022
DO - 10.1016/j.jchromb.2009.08.022
M3 - Article
C2 - 19736047
AN - SCOPUS:72049124259
VL - 877
SP - 3495
EP - 3505
JO - Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences
JF - Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences
SN - 1570-0232
IS - 29
ER -