Certificateless Signature with Strong Unforgeability in the Standard Model

Ying Hao Hung, Sen Shan Huang, Yuh Min Tseng, Tung Tso Tsai

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


Certificateless public-key systems (CL-PKS) were introduced to simultaneously solve two critical problems in public-key systems. One is the key escrow problem in ID-based public-key systems and the other is to eliminate the presence of certificates in conventional public-key systems. In the last decade, several certificateless signature (CLS) schemes have been proposed in the random oracle model. These CLS schemes possess existential unforgeability against adaptive chosen-message attacks, and only few of them possess strong unforgeability. A CLS scheme with strong unforgeability plays an important role in the construction of certificateless cryptographic schemes. Unfortunately, all the existing CLS schemes in the standard model (without random oracles) have been shown insecure to provide existential unforgeability under a generally adopted security model. In the article, we propose a strongly secure CLS scheme in the standard model under the generally adopted security model. Our scheme possesses not only existential unforgeability but also strong unforgeability, and turns out to be the first strongly secure CLS scheme in the standard model. Under the collision resistant hash (CRH) and computational Diffie-Hellman (CDH) assumptions, we prove that our CLS scheme possesses strong unforgeability against both Type I (outsiders) and Type II (key generation center) adversaries.

Original languageEnglish
Pages (from-to)663-684
Number of pages22
JournalInformatica (Netherlands)
Issue number4
Publication statusPublished - 2015 Mar 3

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Certificateless Signature with Strong Unforgeability in the Standard Model'. Together they form a unique fingerprint.

Cite this