Abstract
Linear model is a general forecasting model and moving average technical index (MATI) is one of useful forecasting methods to predict the future stock prices in stock markets. Therefore, individual investors, stock fund managers, and financial analysts attempt to predict price fluctuation in stock markets by either linear model or MATI. From literatures, three major drawbacks are found in many existing forecasting models. First, forecasting rules mined from some AI algorithms, such as neural networks, could be very difficult to understand. Second, statistic assumptions about variables are required for time series to generate forecasting models, which are not easily understandable by stock investors. Third, stock market investors usually make short-term decisions based on recent price fluctuations, i.e., the last one or two periods, but most time series models use only the last period of stock price. In order to overcome these drawbacks, this study proposes a hybrid forecasting model using linear model and MATI to predict stock price trends with the following four steps: (1) test the lag period of Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and calculate the last n-period moving average; (2) use subtractive clustering to partition technical indicator values into linguistic values based on data discretization method objectively; (3) employ fuzzy inference system (FIS) to build linguistic rules from the linguistic technical indicator dataset, and optimize the FIS parameters by adaptive network; and (4) refine the proposed model by adaptive expectation models. The proposed model is then verified by root mean squared error (RMSE), and a ten-year period of TAIEX is selected as experiment datasets. The results show that the proposed model is superior to the other forecasting models, namely Chen's model and Yu's model in terms of RMSE.
Original language | English |
---|---|
Pages (from-to) | 86-92 |
Number of pages | 7 |
Journal | Applied Soft Computing Journal |
Volume | 19 |
DOIs | |
Publication status | Published - 2014 Jun 1 |
Fingerprint
All Science Journal Classification (ASJC) codes
- Software
Cite this
}
A hybrid ANFIS based on n-period moving average model to forecast TAIEX stock. / Wei, Liang Ying; Cheng, Ching Hsue; Wu, Hsin-Hung.
In: Applied Soft Computing Journal, Vol. 19, 01.06.2014, p. 86-92.Research output: Contribution to journal › Article
TY - JOUR
T1 - A hybrid ANFIS based on n-period moving average model to forecast TAIEX stock
AU - Wei, Liang Ying
AU - Cheng, Ching Hsue
AU - Wu, Hsin-Hung
PY - 2014/6/1
Y1 - 2014/6/1
N2 - Linear model is a general forecasting model and moving average technical index (MATI) is one of useful forecasting methods to predict the future stock prices in stock markets. Therefore, individual investors, stock fund managers, and financial analysts attempt to predict price fluctuation in stock markets by either linear model or MATI. From literatures, three major drawbacks are found in many existing forecasting models. First, forecasting rules mined from some AI algorithms, such as neural networks, could be very difficult to understand. Second, statistic assumptions about variables are required for time series to generate forecasting models, which are not easily understandable by stock investors. Third, stock market investors usually make short-term decisions based on recent price fluctuations, i.e., the last one or two periods, but most time series models use only the last period of stock price. In order to overcome these drawbacks, this study proposes a hybrid forecasting model using linear model and MATI to predict stock price trends with the following four steps: (1) test the lag period of Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and calculate the last n-period moving average; (2) use subtractive clustering to partition technical indicator values into linguistic values based on data discretization method objectively; (3) employ fuzzy inference system (FIS) to build linguistic rules from the linguistic technical indicator dataset, and optimize the FIS parameters by adaptive network; and (4) refine the proposed model by adaptive expectation models. The proposed model is then verified by root mean squared error (RMSE), and a ten-year period of TAIEX is selected as experiment datasets. The results show that the proposed model is superior to the other forecasting models, namely Chen's model and Yu's model in terms of RMSE.
AB - Linear model is a general forecasting model and moving average technical index (MATI) is one of useful forecasting methods to predict the future stock prices in stock markets. Therefore, individual investors, stock fund managers, and financial analysts attempt to predict price fluctuation in stock markets by either linear model or MATI. From literatures, three major drawbacks are found in many existing forecasting models. First, forecasting rules mined from some AI algorithms, such as neural networks, could be very difficult to understand. Second, statistic assumptions about variables are required for time series to generate forecasting models, which are not easily understandable by stock investors. Third, stock market investors usually make short-term decisions based on recent price fluctuations, i.e., the last one or two periods, but most time series models use only the last period of stock price. In order to overcome these drawbacks, this study proposes a hybrid forecasting model using linear model and MATI to predict stock price trends with the following four steps: (1) test the lag period of Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and calculate the last n-period moving average; (2) use subtractive clustering to partition technical indicator values into linguistic values based on data discretization method objectively; (3) employ fuzzy inference system (FIS) to build linguistic rules from the linguistic technical indicator dataset, and optimize the FIS parameters by adaptive network; and (4) refine the proposed model by adaptive expectation models. The proposed model is then verified by root mean squared error (RMSE), and a ten-year period of TAIEX is selected as experiment datasets. The results show that the proposed model is superior to the other forecasting models, namely Chen's model and Yu's model in terms of RMSE.
UR - http://www.scopus.com/inward/record.url?scp=84896857665&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84896857665&partnerID=8YFLogxK
U2 - 10.1016/j.asoc.2014.01.022
DO - 10.1016/j.asoc.2014.01.022
M3 - Article
AN - SCOPUS:84896857665
VL - 19
SP - 86
EP - 92
JO - Applied Soft Computing
JF - Applied Soft Computing
SN - 1568-4946
ER -