A design for an adjustable fuzzy pulse pump controller in a frequency-locked servo system

Liang-Rui Chen, Guan Chyun Hsieh, Hahn Ming Lee

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

In this paper, an Adjustable Fuzzy Pulse Pump Controller (AFPPC) is proposed for use in a Frequency-Locked Servo system (FLS). The defuzzification used in the AFPPC is the α-cut based Adjustable Defuzzification Method (α-ADM). By use of the α-ADM, the behavior of the AFPPC can be easily and effectively modified and therefore a proper motion profile of the AFPPC can be easily obtained without tuning the membership functions and fuzzy control rules. Besides these points, the proposed AFPPC is able to overcome drawbacks inherent in the traditional FLS (e.g., slow locking process and overshoot) such that a fast and stable response without overshoot and containing zero steady-state error is obtained. In this paper, the mathematical model for the AFPPC-based FLS (AF-FLS) is derived as well. Based on this model, computer simulation is conducted to determine the α value of the AFPPC, and the system stability is discussed to determine the sampling period T. To justify the proposed approach, a position servomechanism based on AF-FLS is designed and built. The experimental result is very close to the theoretical result. In comparison with a conventional pump controller and a normal fuzzy pulse pump controller, the acquisition time of the AF-FLS is reduced by 43% and 32%, respectively. The results of simulation and experiment show that AFPPC has a suitable pump voltage to achieve fast locking response without overshoot as described.

Original languageEnglish
Pages (from-to)441-452
Number of pages12
JournalJournal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an
Volume28
Issue number3
DOIs
Publication statusPublished - 2005 Jan 1

Fingerprint

Servomechanisms
Pumps
Controllers
Delta modulation
Membership functions
Fuzzy control
System stability
Tuning
Mathematical models
Sampling

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Cite this

@article{231171b83a9e42efb694bce14336e8a5,
title = "A design for an adjustable fuzzy pulse pump controller in a frequency-locked servo system",
abstract = "In this paper, an Adjustable Fuzzy Pulse Pump Controller (AFPPC) is proposed for use in a Frequency-Locked Servo system (FLS). The defuzzification used in the AFPPC is the α-cut based Adjustable Defuzzification Method (α-ADM). By use of the α-ADM, the behavior of the AFPPC can be easily and effectively modified and therefore a proper motion profile of the AFPPC can be easily obtained without tuning the membership functions and fuzzy control rules. Besides these points, the proposed AFPPC is able to overcome drawbacks inherent in the traditional FLS (e.g., slow locking process and overshoot) such that a fast and stable response without overshoot and containing zero steady-state error is obtained. In this paper, the mathematical model for the AFPPC-based FLS (AF-FLS) is derived as well. Based on this model, computer simulation is conducted to determine the α value of the AFPPC, and the system stability is discussed to determine the sampling period T. To justify the proposed approach, a position servomechanism based on AF-FLS is designed and built. The experimental result is very close to the theoretical result. In comparison with a conventional pump controller and a normal fuzzy pulse pump controller, the acquisition time of the AF-FLS is reduced by 43{\%} and 32{\%}, respectively. The results of simulation and experiment show that AFPPC has a suitable pump voltage to achieve fast locking response without overshoot as described.",
author = "Liang-Rui Chen and Hsieh, {Guan Chyun} and Lee, {Hahn Ming}",
year = "2005",
month = "1",
day = "1",
doi = "10.1080/02533839.2005.9671011",
language = "English",
volume = "28",
pages = "441--452",
journal = "Chung-kuo Kung Ch'eng Hsueh K'an/Journal of the Chinese Institute of Engineers",
issn = "0253-3839",
publisher = "Chinese Institute of Engineers",
number = "3",

}

TY - JOUR

T1 - A design for an adjustable fuzzy pulse pump controller in a frequency-locked servo system

AU - Chen, Liang-Rui

AU - Hsieh, Guan Chyun

AU - Lee, Hahn Ming

PY - 2005/1/1

Y1 - 2005/1/1

N2 - In this paper, an Adjustable Fuzzy Pulse Pump Controller (AFPPC) is proposed for use in a Frequency-Locked Servo system (FLS). The defuzzification used in the AFPPC is the α-cut based Adjustable Defuzzification Method (α-ADM). By use of the α-ADM, the behavior of the AFPPC can be easily and effectively modified and therefore a proper motion profile of the AFPPC can be easily obtained without tuning the membership functions and fuzzy control rules. Besides these points, the proposed AFPPC is able to overcome drawbacks inherent in the traditional FLS (e.g., slow locking process and overshoot) such that a fast and stable response without overshoot and containing zero steady-state error is obtained. In this paper, the mathematical model for the AFPPC-based FLS (AF-FLS) is derived as well. Based on this model, computer simulation is conducted to determine the α value of the AFPPC, and the system stability is discussed to determine the sampling period T. To justify the proposed approach, a position servomechanism based on AF-FLS is designed and built. The experimental result is very close to the theoretical result. In comparison with a conventional pump controller and a normal fuzzy pulse pump controller, the acquisition time of the AF-FLS is reduced by 43% and 32%, respectively. The results of simulation and experiment show that AFPPC has a suitable pump voltage to achieve fast locking response without overshoot as described.

AB - In this paper, an Adjustable Fuzzy Pulse Pump Controller (AFPPC) is proposed for use in a Frequency-Locked Servo system (FLS). The defuzzification used in the AFPPC is the α-cut based Adjustable Defuzzification Method (α-ADM). By use of the α-ADM, the behavior of the AFPPC can be easily and effectively modified and therefore a proper motion profile of the AFPPC can be easily obtained without tuning the membership functions and fuzzy control rules. Besides these points, the proposed AFPPC is able to overcome drawbacks inherent in the traditional FLS (e.g., slow locking process and overshoot) such that a fast and stable response without overshoot and containing zero steady-state error is obtained. In this paper, the mathematical model for the AFPPC-based FLS (AF-FLS) is derived as well. Based on this model, computer simulation is conducted to determine the α value of the AFPPC, and the system stability is discussed to determine the sampling period T. To justify the proposed approach, a position servomechanism based on AF-FLS is designed and built. The experimental result is very close to the theoretical result. In comparison with a conventional pump controller and a normal fuzzy pulse pump controller, the acquisition time of the AF-FLS is reduced by 43% and 32%, respectively. The results of simulation and experiment show that AFPPC has a suitable pump voltage to achieve fast locking response without overshoot as described.

UR - http://www.scopus.com/inward/record.url?scp=20044389506&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=20044389506&partnerID=8YFLogxK

U2 - 10.1080/02533839.2005.9671011

DO - 10.1080/02533839.2005.9671011

M3 - Article

AN - SCOPUS:20044389506

VL - 28

SP - 441

EP - 452

JO - Chung-kuo Kung Ch'eng Hsueh K'an/Journal of the Chinese Institute of Engineers

JF - Chung-kuo Kung Ch'eng Hsueh K'an/Journal of the Chinese Institute of Engineers

SN - 0253-3839

IS - 3

ER -