Abstract
We consider a Chern-Simons theory of planar matter fields interacting with the Chern.Simons gauge field in a SU(N)global ⊗ U(1)local invariant fashion. We classify the radially symmetric soliton solutions of the system in terms of the prescribed value of magnetic flux associated with this model. We also prove the uniqueness of the topological solution in a certain condition.
Original language | English |
---|---|
Pages (from-to) | 575-595 |
Number of pages | 21 |
Journal | Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire |
Volume | 33 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2016 Mar 1 |
Fingerprint
All Science Journal Classification (ASJC) codes
- Analysis
- Mathematical Physics
Cite this
}
A classification of semilocal vortices in a Chern-Simons theory. / Chern, Jann Long; Chen, Zhi-You; Yang, Sze Guang.
In: Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, Vol. 33, No. 2, 01.03.2016, p. 575-595.Research output: Contribution to journal › Article
TY - JOUR
T1 - A classification of semilocal vortices in a Chern-Simons theory
AU - Chern, Jann Long
AU - Chen, Zhi-You
AU - Yang, Sze Guang
PY - 2016/3/1
Y1 - 2016/3/1
N2 - We consider a Chern-Simons theory of planar matter fields interacting with the Chern.Simons gauge field in a SU(N)global ⊗ U(1)local invariant fashion. We classify the radially symmetric soliton solutions of the system in terms of the prescribed value of magnetic flux associated with this model. We also prove the uniqueness of the topological solution in a certain condition.
AB - We consider a Chern-Simons theory of planar matter fields interacting with the Chern.Simons gauge field in a SU(N)global ⊗ U(1)local invariant fashion. We classify the radially symmetric soliton solutions of the system in terms of the prescribed value of magnetic flux associated with this model. We also prove the uniqueness of the topological solution in a certain condition.
UR - http://www.scopus.com/inward/record.url?scp=84959559364&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84959559364&partnerID=8YFLogxK
U2 - 10.1016/j.anihpc.2014.11.007
DO - 10.1016/j.anihpc.2014.11.007
M3 - Article
AN - SCOPUS:84959559364
VL - 33
SP - 575
EP - 595
JO - Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis
JF - Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis
SN - 0294-1449
IS - 2
ER -