Research Output per year

## Fingerprint Dive into the research topics where Kang-Man Liu is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

Dimensional Reduction
Mathematics

Helmholtz equation
Engineering & Materials Science

Boundary value problems
Engineering & Materials Science

Helmholtz Equation
Mathematics

Unbounded Domain
Mathematics

Exact Solution
Mathematics

Boundary Value Problem
Mathematics

Elasticity
Mathematics

## Research Output 1997 2009

- 64 Citations
- 4 h-Index
- 10 Article

## Interval arithmetic error estimation for the solution of Fredholm integral equation

Babuška, I. & Liu, K-M., 2009 Mar 1, In : International Journal of Computer Mathematics. 86, 3, p. 549-566 18 p.Research output: Contribution to journal › Article

Interval Arithmetic

Fredholm Integral Equation

Error Estimation

Error analysis

Integral equations

9
Citations
(Scopus)

## On solving stochastic initial-value differential equations

Babuška, I. & Liu, K. M., 2003 May 1, In : Mathematical Models and Methods in Applied Sciences. 13, 5, p. 715-745 31 p.Research output: Contribution to journal › Article

Karhunen-Loève Expansion

Finite Element Solution

Differential equations

Differential equation

Sobolev spaces

40
Citations
(Scopus)

## Solving stochastic partial differential equations based on the experimental data

Babuška, I., Liu, K. M. & Tempone, R., 2003 Mar 1, In : Mathematical Models and Methods in Applied Sciences. 13, 3, p. 415-444 30 p.Research output: Contribution to journal › Article

Stochastic Partial Differential Equations

Partial differential equations

Experimental Data

Modeling Error

Random Function

## Dimensional reduction for the beam in elasticity on a bounded domain

Liu, K-M., 2000 Jan 1, In : Computers and Mathematics with Applications. 39, 1-2, p. 145-168 24 p.Research output: Contribution to journal › Article

Dimensional Reduction

Elasticity

Bounded Domain

Norm

Semidiscretization

3
Citations
(Scopus)

## Dimensional reduction for the beam in elasticity on an unbounded domain

Liu, K. M., 1999 Apr, In : Mathematical Models and Methods in Applied Sciences. 9, 3, p. 415-444 30 p.Research output: Contribution to journal › Article

Dimensional Reduction

Unbounded Domain

Elasticity

Fourier Transformation

Hilbert spaces