Research Output per year

## Fingerprint Dive into the research topics where Cheng Lee is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

- 1 Similar Profiles

Hamiltonians
Engineering & Materials Science

Hamiltonian Systems
Mathematics

Homoclinic
Mathematics

Periodic Solution
Mathematics

Homoclinic Orbit
Mathematics

Multiplicity
Mathematics

Semiclassical Limit
Mathematics

Nonlinearity
Mathematics

## Research Output 1996 2014

- 210 Citations
- 8 h-Index
- 11 Article

11
Citations
(Scopus)

## Semiclassical limits of ground state solutions to Schrödinger systems

Ding, Y., Lee, C. & Zhao, F., 2014 Oct 15, In : Calculus of Variations and Partial Differential Equations. 51, 3-4, p. 725-760 36 p.Research output: Contribution to journal › Article

Ground State Solution

Semiclassical Limit

Ground state

Concentration Phenomena

Exponential Decay

8
Citations
(Scopus)

## On semiclassical states of a nonlinear Dirac equation

Ding, Y. H., Lee, C. & Ruf, B., 2013 Jan 1, In : Proceedings of the Royal Society of Edinburgh Section A: Mathematics. 143 A, 4, p. 765-790 26 p.Research output: Contribution to journal › Article

Least Energy Solutions

Dirac Equation

Nonlinear Equations

Semiclassical Limit

Converge

28
Citations
(Scopus)

## Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system

Ding, Y. & Lee, C., 2009 Apr 1, In : Journal of Differential Equations. 246, 7, p. 2829-2848 20 p.Research output: Contribution to journal › Article

Hamiltonians

Homoclinic

Exponential Decay

Hamiltonian Systems

H-function

44
Citations
(Scopus)

## Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems

Ding, Y. & Lee, C., 2009 Sep 1, In : Nonlinear Analysis, Theory, Methods and Applications. 71, 5-6, p. 1395-1413 19 p.Research output: Contribution to journal › Article

Hamiltonians

Homoclinic

Hamiltonian Systems

Orbits

Second Order Hamiltonian System

69
Citations
(Scopus)

## Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms

Ding, Y. & Lee, C., 2006 Mar 1, In : Journal of Differential Equations. 222, 1, p. 137-163 27 p.Research output: Contribution to journal › Article

Palais-Smale Condition

Asymptotically Linear

Multiplicity of Solutions

Multiple Solutions

Existence of Solutions